Advertisement

Foundations of Physics

, Volume 34, Issue 5, pp 843–869 | Cite as

Exotic Smoothness and Noncommutative Spaces. The Model-Theoretical Approach

  • Jerzy Król
Article

Abstract

We give an almost explicit presentation of exotic functions corresponding to some exotic smooth structure on topologically trivial ℝ4. The construction relies on the model-theoretic tools from the previous paper. We can formulate unexpected, yet direct connection between “localized” exotic small R4's and some noncommutative spaces. The formalism of QM can be interpreted in terms of exotic smooth R4's localized in spacetime. A new way of looking at the problem of decoherence is suggested. The 4-dimensional spacetime itself has built-in means which may enforce a kind of decoherence.

exotic R4 quantum mechanics noncommutative spaces decoherence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    C. H. Brans and D. Randall, “Exotic differentiable structures and general relativity,” Gen. Relativity Gravitation 25, 205(1993).Google Scholar
  2. 2.
    M. H. Freedman, “The topology of four-dimensional manifolds,” J. Differential Geom. 17, 357-453 (1982).Google Scholar
  3. 3.
    J. W. Milnor, Ann. Math. 64, 399(1959); J. W. Milnor Amer. J. Math. 81, 962(1959).Google Scholar
  4. 4.
    J. Väänänen, “Second-order logic and foundations of mathematics,” Bull. Symbolic Logic 7(4), 504(2001).Google Scholar
  5. 5.
    L. R. Taylor, “An invariant of smooth 4‐manifolds,” Geom. Topol. 1, 71-89 (1997).Google Scholar
  6. 6.
    J. Król, “Background independence in quantum gravity and forcing constructions,” Found. Phys. 34(3)(2004).Google Scholar
  7. 7.
    H. J. Keisler and C. C. Chang, Model Theory, 3rd edn. (North-Holland, Amsterdam, 1990).Google Scholar
  8. 8.
    P. Benioff, “Language is physical,” Quant. Info. Proc. 1, 495-510 (2002).Google Scholar
  9. 9.
    T. Asselmeyer, “Generation of source terms in general relativity by differential structures,” Classical Quantum Gravity 14, 749-758 (1997).Google Scholar
  10. 10.
    T. Asselmeyer-Maluga and C. H. Brans, “ Cosmological anomalies and exotic smoothness structures,” Gen. Relativity Gravitation 34(10)(2002).Google Scholar
  11. 11.
    J. Sładkowski, “Gravity on exotic R4's with few symmetries,” Internat. J. Modern Phys. D 10, 311(2001).Google Scholar
  12. 12.
    A. Robinson, “Topics in non-archimedean mathematics,” Collected Papers (North-Holland, Amsterdam, 1979), pp. 99-112.Google Scholar
  13. 13.
    L. Hörmander, The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis, Vol. 1 (Springer, Berlin, Heildelberg, New York, 1983).Google Scholar
  14. 14.
    J. von Neuman and G. Birghoff, Ann. Math. 37, 823(1936).Google Scholar
  15. 15.
    T. Jech, Set Theory, 2nd edn. (Springer, Berlin, Heildelberg, 1997).Google Scholar
  16. 16.
    R. E. Gompf and A. I. Stipsicz, An Introduction to 4-Manifolds and Kirby Calculus (American Mathematical Society, Rhode Island, 1999).Google Scholar
  17. 17.
    C. H. Brans, “Exotic smoothness and physics,” J. Math. Phys. 35, 5494(1994).Google Scholar
  18. 18.
    J. Halliwell, “Some recent developments in the decoherent histories approach to quantum theory,” quant-ph/0301117 (2003).Google Scholar
  19. 19.
    J. Król, “Exotic ℝ4 and duality in mathematics. Applications to physics,” submitted to J. Geom. Phys. Google Scholar
  20. 20.
    J. Król, “Set theoretical forcing in quantum mechanics and AdS/CFT correspondence,” Internat. J. Theoret. Phys. 42(5), 921-935 (2003); quant-ph/0303089.Google Scholar
  21. 21.
    A. Konechny and A. Schwarz, “Introduction to (M)atrix theory and noncommutative geometry, I, II,” Phys. Rep. 360, 355-465 (2002); hep-th/0107251, hep-th/0012145.Google Scholar
  22. 22.
    E. Witten and N. Seiberg, “String theory and noncommutative geometry,” JHEP 9909, 032(1999).Google Scholar
  23. 23.
    ĂZ. BiĂzaca, “An explicit family of exotic Casson handles,” Proc. Amer. Math. Soc. 123(4), 1297(1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Jerzy Król
    • 1
  1. 1.Institute of PhysicsUniversity of SilesiaKatowicePoland

Personalised recommendations