Foundations of Physics

, Volume 34, Issue 5, pp 771–813

Time Evolution in Macroscopic Systems. III: Selected Applications

  • W. T. GrandyJr.

Abstract

The results of two recent articles expanding the Gibbs variational principle to encompass all of statistical mechanics, in which the role of external sources is made explicit, are utilized to further explicate the theory. Representative applications to nonequilibrium thermodynamics and hydrodynamics are presented, describing several fundamental processes, including hydrodynamic fluctuations. A coherent description of macroscopic relaxation dynamics is provided, along with an exemplary demonstration of the approach to equilibrium in a simple fluid.

nonequilibrium statistical mechanics hydrodynamic fluctuations relaxation approach to equilibrium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. W. Gibbs, Elementary Principles in Statistical Mechanics (Yale University Press, New Haven, CT, 1902).Google Scholar
  2. 2.
    C. Shannon, “Mathematical theory of communication,” Bell System Tech. J. 27, 3, 79, 623 (1948).Google Scholar
  3. 3.
    E. T. Jaynes, “Information theory and statistical mechanics,” Phys. Rev. 106, 620(1957).Google Scholar
  4. 4.
    J. E. Shore and R. W. Johnson, “Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy,” IEEE Trans. Inf. Th. IT-26, 26(1980).Google Scholar
  5. 5.
    W. T. Grandy, Jr., “Time evolution in macroscopic systems. I: Equations of motion,” Found. Phys. 34, 1(2004).Google Scholar
  6. 6.
    W. T. Grandy, Jr., “Time evolution in macroscopic systems. II: The entropy,” Found. Phys. 34, 21(2004).Google Scholar
  7. 7.
    J. W. Gibbs, “On the equilibrium of heterogeneous substances,” Trans. Conn. Acad. Sci. III, 108, 343 (1875-1878) [reprinted in The Scientific Papers of J. Willard Gibbs, Vol. vn1 (Dover, NY, 1961)].Google Scholar
  8. 8.
    E. T. Jaynes, “Information theory and statistical mechanics. II,” Phys. Rev. 108, 171(1957).Google Scholar
  9. 9.
    F. Schlögl, “Produced entropy in quantum statistics,” Z. Phys. 249, 1(1971).Google Scholar
  10. 10.
    E. Pfaffelhuber, “Information-theoretic stability and evolution criteria in irreversible thermodynamics,” J. Stat Phys. 16, 69(1977).Google Scholar
  11. 11.
    W. C. Mitchell, “Statistical mechanics of thermally driven systems,” Ph.D. thesis (Washington University, St. Louis, MO, 1967).Google Scholar
  12. 12.
    S. P. Heims and E. T. Jaynes, “Theory of gyromagnetic effects and some related magnetic phenomena,” Rev. Mod. Phys. 34, 143(1962).Google Scholar
  13. 13.
    W. T. Grandy, Jr., Foundations of Statistical Mechanics, Vol. II: Nonequilibrium Phenomena (Reidel, Dordrecht, 1988).Google Scholar
  14. 14.
    C. Truesdell, Rational Thermodynamics (Springer, New York, 1984).Google Scholar
  15. 15.
    D. Jou, J. Casas-Vásquez, and G. Lebon, Extended Irreversible Thermodynamics (Springer, Berlin, 2001).Google Scholar
  16. 16.
    R. D. Puff and N. S. Gillis, “Fluctuations and transport properties of many-particle systems,” Ann. Phys. (N.Y.) 6, 364(1968).Google Scholar
  17. 17.
    W. T. Grandy, Jr., Foundations of Statistical Mechanics, Vol. I: Equilibrium Theory (Reidel, Dordrecht, 1987).Google Scholar
  18. 18.
    L. D. Landau and E. M. Lifshitz, “Hydrodynamic fluctuations,” Sov. Phys. JETP 5, 512(1957) [Zh. Eksp. Teor. Fiz. 32, 618(1957)]. See, also, Fluid Mechanics (Pergamon, New York, 1959).Google Scholar
  19. 19.
    G. Quentin and I. Rehberg, “Direct measurement of hydrodynamic fluctuations in a binary mixture,” Phys. Rev. Lett. 74, 1578(1995).Google Scholar
  20. 20.
    V. G. Morozov, “On the Langevin formalism for nonlinear and nonequilibrium hydrodynamic fluctuations,” Physica A 126, 443(1984).Google Scholar
  21. 21.
    R. F. Fox, “Hydrodynamic fluctuation theories,” J. Math. Phys. 19, 1993(1978).Google Scholar
  22. 22.
    R. Schmitz and E. G. D. Cohen, “Fluctuations in a fluid under a stationary heat flux. I. General theory,” J. Stat. Phys. 38, 285(1985).Google Scholar
  23. 23.
    J. A. Snow, “Sound absorption in model quantum systems,” Ph.D. thesis (Washington University, St. Louis, MO, 1967).Google Scholar
  24. 24.
    E. T. Jaynes, “Where do we stand on maximum entropy?,” in The Maximum Entropy Formalism, R. D. Levine and M. Tribus, eds. (M.I.T. Press, Cambridge, MA, 1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • W. T. GrandyJr.
    • 1
  1. 1.Department of Physics & AstronomyUniversity of WyomingLaramie

Personalised recommendations