Foundations of Physics

, Volume 34, Issue 2, pp 193–209 | Cite as

Gleason-Type Derivations of the Quantum Probability Rule for Generalized Measurements

  • Carlton M. Caves
  • Christopher A. Fuchs
  • Kiran K. Manne
  • Joseph M. Renes


We prove a Gleason-type theorem for the quantum probability rule using frame functions defined on positive-operator-valued measures (POVMs), as opposed to the restricted class of orthogonal projection-valued measures used in the original theorem. The advantage of this method is that it works for two-dimensional quantum systems (qubits) and even for vector spaces over rational fields—settings where the standard theorem fails. Furthermore, unlike the method necessary for proving the original result, the present one is rather elementary. In the case of a qubit, we investigate similar results for frame functions defined upon various restricted classes of POVMs. For the so-called trine measurements, the standard quantum probability rule is again recovered.

quantum measurements quantum probability rule frame functions POVM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Kochen and E. P. Specker, J. Math. Mech. 17, 59(1967).Google Scholar
  2. 2.
    A. M. Gleason, J. Math. Mech. 6, 885(1957).Google Scholar
  3. 3.
    C. A. Fuchs, “Quantum mechanics as quantum information (and only a little more),” quant-ph/0205039.Google Scholar
  4. 4.
    R. J. Greechie and D. J. Foulis, Int. J. Theor. Phys. 34, 1369(1995).Google Scholar
  5. 5.
    G. Ludwig, Foundations of Quantum Mechanics (Springer, Berlin, 1983).Google Scholar
  6. 6.
    K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory, Lecture Notes in Physics, Vol. 190 (Springer, Berlin, 1983).Google Scholar
  7. 7.
    P. Busch, M. Grabowski, and P. Lahti, Operational Quantum Physics (Springer, Berlin, 1995); 2nd corrected printing, 1997.Google Scholar
  8. 8.
    P. Busch, “Resurrection of von Neumann's no-hidden-variables theorem,” quant-ph/ 9909073.Google Scholar
  9. 9.
    D. A. Meyer, Phys. Rev. Lett. 83, 3751(1999).Google Scholar
  10. 10.
    R. Clifton and A. Kent, Proc. Roy. Soc. London Ser. A 456, 2101(2000).Google Scholar
  11. 11.
    D. M. Appleby, Phys. Rev. A 65, 022105(2002).Google Scholar
  12. 12.
    A. Cabello, Phys. Rev. A 65, 052101(2002).Google Scholar
  13. 13.
    W. Tung, Group Theory in Physics (World Scientific, Philadelphia, 1993).Google Scholar
  14. 14.
    A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic, Dordrecht, The Netherlands, 1993).Google Scholar
  15. 15.
    A. Cabello, Phys. Rev. Lett. 90, 190401(2003).Google Scholar
  16. 16.
    G. M. D'Ariano and P. L. Presti, “Classical and quantum noise in measurements and transformations,” quant-ph/0301110.Google Scholar
  17. 17.
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Carlton M. Caves
    • 1
  • Christopher A. Fuchs
    • 2
    • 3
  • Kiran K. Manne
    • 1
  • Joseph M. Renes
    • 1
  1. 1.Department of Physics and AstronomyUniversity of New MexicoAlbuquerque
  2. 2.Quantum Information and Optics Research, Bell LabsLucent TechnologiesMurray Hill
  3. 3.Communication Networks Research InstituteDublin Institute of TechnologyDublin 6Ireland

Personalised recommendations