Foundations of Physics

, Volume 34, Issue 1, pp 1–20 | Cite as

Time Evolution in Macroscopic Systems. I. Equations of Motion

  • W. T. GrandyJr.


Time evolution of macroscopic systems is re-examined primarily through further analysis and extension of the equation of motion for the density matrix ρ(t). Because ρ contains both classical and quantum-mechanical probabilities it is necessary to account for changes in both in the presence of external influences, yet standard treatments tend to neglect the former. A model of time-dependent classical probabilities is presented to illustrate the required type of extension to the conventional time-evolution equation, and it is shown that such an extension is already contained in the definition of the density matrix.

nonequilibrium statistical mechanics time-dependent probabilities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Pauli, “Über das H-Theorem vom Anwaschen der Entropie vom Standpunkt der neuen Quantenmechanik,” in Probleme der modernen Physik, Arnold Sommerfeld zum 60. Geburtstage gewidmet vonsiner Schülern (Leipzig, 1928).Google Scholar
  2. 2.
    N. G. van Kampen, “Fundamental problems in statistical mechanics of irreversible processes,” in Fundamental Problems in Statistical Mechanics, E. G. D. Cohen, ed. (North-Holland, Amsterdam, 1962), p. 173.Google Scholar
  3. 3.
    R. Zwanzig, “Statistical mechanics of irreversibility,” in Lectures in Theoretical Physics, Vol. III, W. E. Brittin, B. W. Downs, and J. Downs, eds. (Interscience, New York, 1962).Google Scholar
  4. 4.
    H. Mori, “Transport, collective motion, and Brownian motion,” Prog. Theor. Phys 33, 423(1965).Google Scholar
  5. 5.
    N. G. van Kampen, “The case against linear response theory”, Physica Norvegica 5, 279(1971).Google Scholar
  6. 6.
    W. T. Grandy, Jr.,“Time evolution in macroscopic systems. II: The entropy,” Found. Phys.3421(2004), following paper.Google Scholar
  7. 7.
    J. W. Gibbs, Elementary Principles in Statistical Mechanics (Yale University Press, New Haven, CT, 1902).Google Scholar
  8. 8.
    C. Shannon, “Mathematical theory of communication”, Bell System Tech. J. 27, 379, 623 (1948).Google Scholar
  9. 9.
    E. T. Jaynes, “Information theory and statistical mechanics”, Phys. Rev. 106, 620(1957).Google Scholar
  10. 10.
    E. T. Jaynes, “Where do we stand on maximum entropy?”, in The Maximum Entropy Formalism, R. D. Levine and M. Tribus, eds. (M.I.T. Press, Cambridge, MA, 1979).Google Scholar
  11. 11.
    S. R. de Groot and P. Mazur, Nonequilibrium Thermodynamics (North-Holland, Amsterdam, 1962).Google Scholar
  12. 12.
    D. Zubarev, V. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes. Volume 1: Basic Concepts, Kinetic Theory (Akademie, Berlin, 1996).Google Scholar
  13. 13.
    R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics (Springer, Berlin, 1985).Google Scholar
  14. 14.
    J. L. Lebowitz, “Statistical mechanics: A selective review of two central issues”, Rev. Mod. Phys. 71, s346(1999).Google Scholar
  15. 15.
    W. T. Grandy, Jr., “Principle of maximum entropy and irreversible processes,” Phys. Rep. 62, 175(1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • W. T. GrandyJr.
    • 1
  1. 1.Department of Physics & AstronomyUniversity of WyomingLaramie

Personalised recommendations