, Volume 137, Issue 2, pp 203–223 | Cite as

Molecular mapping of powdery mildew resistance genes in wheat: A review

  • Xiu-Qiang Huang
  • Marion S. Röder


Powdery mildew, caused by Blumeria graminis f. sp. tritici (syn. Erysiphe graminis f. sp. tritici), is one of the most important diseases of common wheat (Triticum aestivum L.) worldwide. Molecular mapping and cloning of genes for resistance to powdery mildew in hexaploid wheat will facilitate the study of molecular mechanisms underlying resistance to powdery mildew diseases and help understand the structure and function of powdery mildew resistance genes, and permit marker-assisted selection in breeding programs. So far, 48 genes/alleles for resistance to powdery mildew at 32 loci have been identified and located on 16 different chromosomes, of which 21 resistance genes/alleles have been tagged by restriction fragment length polymorphisms (RFLPs), random-amplified polymorphic DNAs (RAPDs), amplified fragment length polymorphisms (AFLPs), sequence characterized amplified regions (SCARs), sequence-tagged sites (STS) or simple sequence repeats (SSRs). Several quantitative trait loci (QTLs) for adult plant resistance (APR) to powdery mildew have been associated with molecular markers. The detailed information on chromosomal location and molecular mapping of these genes has been reviewed. Isolation of powdery mildew resistance genes and development of valid molecular markers for pyramiding resistance genes in breeding programs is also discussed.

Blumeria graminis f. sp. tritici gene isolation genetic mapping marker-assisted selection molecular markers powdery mildew resistance Triticum aestivum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altpeter, F., V. Vasil, V. Srivastasa, E. Stöoger & I.K. Vasil, 1996. Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep 16: 12–17.Google Scholar
  2. Becker, J., P. Vos, M. Kuiper, F. Salamini & M. Heun, 1995. Com-bined mapping of AFLP and RFLP markers in barley. Mol Gen Genet 249: 65–73.Google Scholar
  3. Bennett, F.G.A., 1984. Resistance to powdery mildew in wheat: A review of its use in agriculture and breeding programmes. Plant Pathol 33: 279–300.Google Scholar
  4. Briggle, L.W., 1966. Three loci in wheat involving resistance to Erysiphe graminis f. sp. tritici. Crop Sci 6: 461–465.Google Scholar
  5. Briggle, L.W. & E.R. Sears, 1966. Linkage of resistance to Erysiphe graminis f. sp. tritici (Pm3) and hairy glume (Hg)onchromosome 1A of wheat. Crop Sci 6: 559–561.Google Scholar
  6. Brooks, S.A., L. Huang, B.S. Gill & J.P. Fellers, 2002. Analysis of 106 kb of contiguous DNAsequence from the Dgenome of wheat reveals high gene density and a complex arrangement of genes related to disease resistance. Genome 45: 963–972.Google Scholar
  7. Büschges, R., K. Hoollricher, R. Panstruga, G. Simons, M. Wolter, A. Frijters, R. Van Daelen, T. Van der Lee, P. Diergaarde, J. Groenendijk, S. Tōpsch, P. Vos, F. Salamini & P. Schulze-Lefert, 1997. The barley Mlo gene: A novel control element of plant pathogen resistance. Cell 88: 695–705.Google Scholar
  8. Cenci, A., N. Chantret, X. Kong, Y. Gu, O.D. Anderson, T. Fahima, A. Distelfeld & J. Dubcovsky, 2003. Construction and charac-terization of a half million clone BAC library of durum wheat (Triticum turgidum ssp. durum). Theor Appl Gent 107: 931–939.Google Scholar
  9. Cenci, A., R. D'Ovidio, O.A. Tanzarella, C. Ceoloni & E. Porceddu, 1999. Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor Appl Genet 98: 448–454.Google Scholar
  10. Ceoloni, C., G. Del Signore, L. Ercoli & P. Donini, 1992. Locating the alien chromatin segment in common wheat-Aegilops longissima mildew resistance transfers. Hereditas 116: 239–245.Google Scholar
  11. Chantret, N., D. Mingeot, P. Sourdille, M. Bernard, J.M. Jacquemin & G. Doussinault, 2001. A major QTL for powdery mildew resis-tance is stable over time and at two development stages in winter wheat. Theor Appl Genet 103: 962–971.Google Scholar
  12. Chantret, N., P. Sourdille, M. Rōder, M. Tavaud, M. Bernard & G. Doussinault, 2000. Location and mapping of the powdery mildew resistance gene MlRE and detection of a resistance QTLby bulked segregant analysis (BSA) with microsatellites in wheat. Theor Appl Genet 100: 1217–1224.Google Scholar
  13. Chao, S., P.J. Sharp, A.J. Worland, E.J. Warham, R.M.D. Koebner & M.D. Gale, 1989. RFLP-based genetic maps of wheat homoeol-ogous group 7 chromosomes. Theor Appl Genet 78: 495–504.Google Scholar
  14. Chen, P.D., L.L. Qi, B. Zhou, S.Z. Zhang & D.J. Liu, 1995. Devel-opment and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to pow-dery mildew. Theor Appl Genet 91: 1125–1129.Google Scholar
  15. de Froidmont, D., 1998. A co-dominant marker for the 1BL/1RS wheat-rye translocation via multiplex PCR. J Cereal Sci 27: 229– 232.Google Scholar
  16. Devos, K.M. & M.D. Gale, 1992. The use of random amplified poly-morphic DNA markers in wheat. Theor Appl Genet 84, 567–572.Google Scholar
  17. Devos, K.M. & M.D. Gale, 2000. Genome relationships: The grass model in current research. Plant Cell 12: 637–646.Google Scholar
  18. Di Rienzo, A., A.C. Peterson, J.C. Garza, A.M. Valdes, M. Slatkin & N.B. Freimer, 1994. Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91: 3166–3170.Google Scholar
  19. Donini, P., R.M.D. Koebner & C. Ceoloni, 1995. Cytogenetic and molecular mapping of the wheat-Aegilops longissima chromatin breakpoints in powdery mildew resistant introgression lines. Theor Appl Genet 91: 738–743.Google Scholar
  20. Dubcovsky, J., M.C. Luo, G.Y. Zhong, R. Bransteitter, A. Desai, A. Kilian, A. Kleinhofs & J. Dvorak, 1996. Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 143: 983–999.Google Scholar
  21. Faris, J.D., J.P. Fellers, S.A. Brooks & B.S. Gill, 2003. A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164: 311–321.Google Scholar
  22. Faris, J.D., K.M. Haen & B.S. Gill, 2000. Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154: 823–835.Google Scholar
  23. Feuillet, C. & B. Keller, 1999. High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci USA 96: 8265–8270.Google Scholar
  24. Feuillet, C., S. Travella, N. Stein, L. Albar, A. Nublat & B. Keller, 2003. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100: 15253–15258.Google Scholar
  25. Flor, H.H., 1955. Host–parasite interaction in flax rust—its genetics and other implications. Phytopathology 45: 680–685.Google Scholar
  26. Frary, A., T.C. Nesbitt, A. Frary, S. Grandillo, E. van der Knaap, B. Cong, J.P. Liu, J. Meller, R. Elber, K.B. Alpert & S.D. Tanksley, 2000. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 289: 85–88.Google Scholar
  27. Friebe, B., M. Heun, N. Tuleen, F.J. Zeller & B.S. Gill, 1994. Cy-togenetically monitored transfer of powdery mildew resistance from rye to wheat. Crop Sci 34: 621–625.Google Scholar
  28. Friebe, B., J. Jiang, W.J. Raupp, R.A. McIntosh & B.S. Gill, 1996. Characterization of wheat-alien translocation conferring resis-tance to diseases and pests: Current status. Euphytica 91: 59–87.Google Scholar
  29. Foote, T., M. Roberts, N. Kurata, T. Sasaki & G. Moore, 1997. De-tailed comparative mapping of cereal chromosome regions cor-responding to the Ph1 locus in wheat. Genetics 147: 801–807.Google Scholar
  30. Gale, M.D. & K.M. Devos, 1998. Comparative genetics in the grasses. Proc Natl Acad Sci USA 95: 1971–1974.Google Scholar
  31. Gill, K.S., B.S. Gill, T.R. Endo & E.V. Boyko, 1996a. Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143: 1001–1012.Google Scholar
  32. Gill, K.S., B.S. Gill, T.R. Endo & T. Taylor, 1996b. Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 144: 1883–1891.Google Scholar
  33. Griffey, C.A. & M.K. Das, 1994. Inheritance of adult-plant resistance to powdery mildew in Massey and Knox 62 winter wheats. Crop Sci 34: 641–646.Google Scholar
  34. Griffey, C.A., M.K. Das & E.L. Stromberg, 1993. Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat. Plant Dis 77: 618–622.Google Scholar
  35. Gupta, P.K., R.K. Varshney, P.C. Sharma & B. Ramesh, 1999. Molecular markers and their applications in wheat breeding. Plant Breed 118: 369–390.Google Scholar
  36. Gupta, P.K., H.S. Balyan, K.J. Edwards, P. Isaac, V. Korzun, M. Röder, M.-F. Gautier, P. Joudrier, A.R. Schlatter, J. Dubcovscy, R.C. De la Pena, M. Khairallah, G. Penner, M.J. Hayden, P. Sharp, B. Keller, R.C.C. Wang, J.P. Hardouin, P. Jack & P. Leroy, 2002. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105: 413–422.Google Scholar
  37. Guyomarc'h, H., P. Sourdille, G. Charmet, K.J. Edwards & M. Bernard, 2002. Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104: 1164–1172.Google Scholar
  38. Halterman, D.A., F. Wei & R.P. Wise, 2003. Powdery mildew-induced Mla mRNAs are alternatively spliced and contain multi-ple upstream open reading frames. Plant Physiol 131: 558–567.Google Scholar
  39. Halterman, D., F. Zhou, F. Wei, R.P. Wise & P. Schulze-Lefert, 2001. The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J 25: 335–348.Google Scholar
  40. Hartl, L., H. Weiss, U. Stephan, F.J. Zeller & A. Jahoor, 1995. Molec-ular identification of powdery mildewresistance genes in common wheat (Triticum aestivum L.). Theor Appl Genet 90: 601–606.Google Scholar
  41. Hartl, L., V. Mohler, F.J. Zeller, S.K.L. Hsam & G. Schweizer, 1999. Identification of AFLP markers closely linked to the powdery mildew resistance genes Pm1c and Pm4a in common wheat. Genome 42: 322–329.Google Scholar
  42. Hartl, L., H. Weiss, F.J. Zeller & A. Jahoor, 1993. Use of RFLP markers for the identification of alleles of the Pm3 locus confer-ring powdery mildew resistance in wheat (Triticum aestivum L.). Theor Appl Genet 86: 959–963.Google Scholar
  43. Heun, M., B. Friebe & W. Bushuk, 1990. Chromosomal location of the powdery mildew resistance gene of Amigo wheat. Phy-topathology 80: 1129–1133.Google Scholar
  44. Hautea, R.A., W.R. Coffman, M.E. Sorrells & G.C. Bergstrom, 1987. Inheritance of partial resistance to powdery mildew in spring wheat. Theor Appl Genet 73: 609–615.Google Scholar
  45. Hsam, S.L.K., X.Q. Huang, F. Ernst, L. Hartl & F.J. Zeller, 1998. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.). 5. Alleles at the Pm1 locus. Theor Appl Genet 96: 1129–1134.Google Scholar
  46. Hsam, S.L.K., X.Q. Huang & F.J. Zeller, 2001. Chromosomal loca-tion of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.). 6. Alleles at the Pm5 locus. Theor Appl Genet 102: 127–133.Google Scholar
  47. Hsam, S.L.K., I.F. Lapochkina & F.J. Zeller, 2003. Chromosomal location of genes for resistance to powdery mildew in common.220 wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica 133: 367–370.Google Scholar
  48. Hsam, S.L.K., V. Mohler, L. Hartl, G. Wenzel & F.J. Zeller, 2000. Mapping of powdery mildew and leaf rust resistance genes on the wheat-rye translocated chromosome T1BL.1RS using molecular and biochemical markers. Plant Breed 119: 87–89.Google Scholar
  49. Hsam, S.L.K. & F.J. Zeller, 1997. Evidence of allelism between genes Pm8and Pm17and chromosomal location of powdery mildewand leaf rust resistance genes in the common wheat cultivar 'Amigo'. Plant Breed 116: 119–122.Google Scholar
  50. Hsam, S.L.K. & F.J. Zeller, 2002. Breeding for powdery mildew resistance in common wheat (Triticum aestivum L.). In: R.R. Be-langer, W.R. Bushnell, A.J. Dik & T.L.W. Carver (Eds.), The Powdery Mildews, A Comprehensive Treatise, pp. 219–238. St. Paul, MN, USA.Google Scholar
  51. Hu, X.Y., H.W. Ohm & I. Dweikat, 1997. Identification of RAPD markers linked to the gene Pm1 for resistance to powdery mildew in wheat. Theor Appl Genet 94: 832–840.Google Scholar
  52. Huang, X.Q., 1999. Location and identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.) using monosomic analysis and molecular markers. Ph.D. Thesis, Technical University Munich, Freising-Weihenstephan, Germany (in German).Google Scholar
  53. Huang, L., S.A. Brooks, W. Li, J.P. Fellers, H.N. Trick & B.S. Gill, 2003c. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164: 655–664.Google Scholar
  54. Huang, X.Q., A. Börner, M.S. Röder & M.W. Ganal, 2002a. Assess-ing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105: 699–707.Google Scholar
  55. Huang, X.Q., H. Cöster, M.W. Ganal & M.S. Röder, 2003b. Ad-vanced backcross QTL analysis for the identification of quan-titative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106: 1379–1389.Google Scholar
  56. Huang, X.Q., S.L.K. Hsam & F.J. Zeller, 2002b. Chromosomal loca-tion of genes for resistance to powdery mildew in Chinese wheat lines Jieyan 94-1-1 and Siyan 94-1-2. Hereditas 136: 212–218.Google Scholar
  57. Huang, X.Q., S.L.K. Hsam & F.J. Zeller, 1997a. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). IX. Cultivars, landraces and breeding lines grown in China. Plant Breed 116: 233–238.Google Scholar
  58. Huang, X.Q., S.L.K. Hsam & F.J. Zeller, 1997b. Chromosomal loca-tion of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.). 4. Gene Pm24 in Chinese lan-drace' Chiyacao'. Theor Appl Genet 95: 950–953.Google Scholar
  59. Huang, X.Q., S.L.K. Hsam & F.J. Zeller, 1997c. Genetic analysis of powdery mildew resistance of four common wheat cultivars. In: L. Tvaruzek (Ed.), Protection of Cereal Crops against Harmful Organisms, pp. 190–193. Kromeriz, Czech Republic.Google Scholar
  60. Huang, X.Q., S.L.K. Hsam & F.J. Zeller, 2000a. Chromosomal lo-cation of two novel genes for resistance to powdery mildew in Chinese landraces (Triticum aestivum L. em. Thell.). J Genet & Breed 54: 311–317.Google Scholar
  61. Huang, X.Q., S.L.K. Hsam, F.J. Zeller, G. Wenzel & V. Mohler, 2000b. Molecular mapping of the wheat powdery mildew re-sistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet 101: 407–414.Google Scholar
  62. Huang, X.Q. & M.S. Röder, 2003. High-density genetic and phys-ical mapping of the powdery mildew resistance gene Pm24 on chromosome 1D of wheat. In: H.N. Pogna, M. Romano, E.A. Pogna and G. Galterio (Eds.), Proceedings of the 10th International Wheat Genetics Symposium, September 1–6, 2003, Paestum, Italy, pp. 961–964.Google Scholar
  63. Huang, X.Q., M.S. Röder, E. Pestsova, A. Börner & M.W. Ganal, 2001. Development and use of wheat microsatellite markers for the characterization of germplasm of hexaploid wheat (Triticum aestivum L.). In: Proceedings of the Plant & Animal Genome IX Conference, January 13–17, 2001, P260, San Diego, CA, USA.Google Scholar
  64. Huang, X.Q., L.X. Wang, M.X. Xu & M.S. Röder, 2003a. Microsatel-lite mapping of the powdery mildewresistance genePm5e in com-mon wheat (Triticum aestivum L.). Theor Appl Genet 106: 858–865.Google Scholar
  65. Huang, X.Q., F.J. Zeller, S.L.K. Hsam, G. Wenzel & V. Mohler, 2000c. Chromosomal location of AFLP markers in common wheat utilizing nulli-tetrasomic stocks. Genome 43: 298–305.Google Scholar
  66. Hulbert, S.H., C.A. Webb, S.M. Smith & Q. Sun, 2001. Resistance gene complexes: Evolution and utilization. Annu Rev Phytopathol 39: 285–312.Google Scholar
  67. Iqbal, M.J. & A.L. Rayburn, 1995. Identification of the 1RS rye chromosomal segment in wheat by RAPD analysis. Theor Appl Genet 91: 1048–1053.Google Scholar
  68. Järve, K., H.O. Peusha, J. Tsymbalova, S. Tamm, K.M. Devos & T.M. Enno, 2000. Chromosomal location of a Triticum timopheevii – derived powdery mildew resistance gene transferred to common wheat. Genome 43: 377–381.Google Scholar
  69. Jia, J., K.M. Devos, S. Chao, T.E. Miller, S.M. Reader & M.D. Gale, 1996. RFLP-based maps of the homoeologous group-6 chromo-somes of wheat and their application in the tagging of Pm12,a powdery mildew resistance gene transferred from Aegilops spel-toides to wheat. Theor Appl Genet 92, 559–565.Google Scholar
  70. Jones, S.S., T.D. Murray & R.E. Allan, 1995. Use of alien genes for the development of disease resistance in wheat. Annu Rev Phytopathol 33: 429–443.Google Scholar
  71. Jørgensen, J.H., 1973. Gene Pm6 for resistance to powdery mildew in wheat. Euphytica 22: 43.Google Scholar
  72. Kasuga, T., S.S. Salimath, J. Shi, M. Gijzen, R.I. Buzzell & M.K. Bhattacharyya, 1997. High resolution genetic and physical map-ping of molecular markers linked to the Phytophthora resistance gene Rps1-k in soybean. Mol Plant-Microbe Interact 10: 1035– 1044.Google Scholar
  73. Keim, P., J.M. Schupp, S.E. Travis, K. Clayton, T. Zhu, L.A. Shi, A. Ferreira & D.M. Webb, 1997. A high-density soybean genetic map based upon AFLP markers. Crop Sci 37: 537–543.Google Scholar
  74. Keller, M., B. Keller, G. Schachermayr, M. Winzeler, J.E. Schmid, P. Stamp & M.M. Messmer, 1999. Quantitative trait loci for re-sistance against powdery mildew in a segregating wheat × spelt population. Theor Appl Genet 98: 903–912.Google Scholar
  75. Kintzios, S., A. Jahoor & G. Fischbeck, 1995. Powdery mildewresis-tance genes Mla29 and Mla32 in H. spontaneum-derived winter barley lines. Plant Breed 114: 265–266.Google Scholar
  76. Kilian, A., J. Chen, F. Han, B. Steffenson & A. Kleinhofs, 1997. To-wards map-based cloning of the barley stem rust resistance genes Rpg1 and rpg4 using rice as an intergenomic cloning vehicle. Plant Mol Biol 35: 187–195.Google Scholar
  77. Knott, D.R., 1989. The Wheat Rusts: Breeding for Resistance. Springer-Verlag, Berlin and Heidelberg.Google Scholar
  78. Konieczny, A. & F.M. Ausubel, 1993. A procedure for mapping Arabidopsis mutations using co-dominant ecotype specific PCR-based markers. Plant J 4: 403–410.Google Scholar
  79. Law, C.N. & M.S. Wolfe, 1966. Location of genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat. Can J Genet Cytol 8: 462–479..221Google Scholar
  80. Leath, S. & K.L. Bowen, 1989. Effects of powdery mildew, triadi-menol seed treatment, and triadimefon foliar sprays on yield of winter wheat in North Carolina. Phytopathology 79: 152– 155.Google Scholar
  81. Lebsock, K.L. & L.W. Briggle, 1974. Gene Pm5 for resistance to Erysiphe graminis f. sp. tritici in Hope wheat. Crop Sci 14: 561– 563.Google Scholar
  82. Leister, D., A. Ballvora, F. Salamini & C. Gebhardt, 1996. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nature Genet 14: 421–429.Google Scholar
  83. Lijavetzky, D., G. Muzzi, T. Wicker, B. Keller, R. Wing & J. Dubcovsky, 1999. Construction and characterization of a bac-terial artificial chromosome (BAC) library for the A genome of wheat. Genome 42: 1176–1182.Google Scholar
  84. Liu, S.X., C.A. Griffey & M.A. Saghai Maroof, 2001. Identification of molecular markers associated with adult plant resistance to powdery mildew in common wheat cultivar Massey. Crop Sci 41: 1268–1275.Google Scholar
  85. Liu, D.J., J.Y. Liu, W.J. Tao & P.D. Chen, 1998. Molecular mark-ers and breeding wheat for powdery mildew resistance. In: A.E. Slinkard (Ed.), Proceedings of the 9th International Wheat Genet Symposium, University Extension Press, Saskatoon, Canada, Vol. 3, pp. 128–131.Google Scholar
  86. Liu, J., D. Liu, W. Tao, W. Li, S. Wang, P. Chen, S. Cheng & D. Gao, 2000. Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breed 119: 21–24.Google Scholar
  87. Liu, Z., Q. Sun, Z. Ni, E. Nevo & T.M. Yang, 2002. Molecular characterization of a novel powdery mildewresistance gene Pm30 in wheat originating from wild emmer. Euphytica 123: 21–29.Google Scholar
  88. Liu, Z., Q. Sun, Z. Ni & T. Yang, 1999. Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breed 118: 215–219.Google Scholar
  89. Lutz, J., S.L.K. Hsam, E. Limpert & F.J. Zeller, 1995. Chromoso-mal location of powdery mildew resistance genes in Triticum aes-tivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity 74: 152–156.Google Scholar
  90. Lutz, J., E. Limpert, P. Bartos & F.J. Zeller, 1992. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). I. Czechoslovakian cultivars. Plant Breed 108: 33– 39.Google Scholar
  91. Ma, Z.Q., M.E. Sorrells & S.D. Tanksley, 1994. RELPmarkers linked to powdery mildew resistance genes Pm1, Pm2, Pm3, and Pm4 in wheat. Genome 37: 871–875.Google Scholar
  92. McIntosh, R.A. & E.P. Baker, 1970. Cytogenetical studies in wheat. IV. Chromosome location and linkage studies involving the Pm2 locus for powdery mildew resistance. Euphytica 19: 71–77.Google Scholar
  93. McIntosh, R.A., G.E. Hart, M.D. Gale & W.J. Rogers, 1998. Cat-alogue of gene symbols for wheat. In: A.E. Slinkard (Ed.), Pro-ceedings of the 9th International Wheat Genet Symposium, Uni-versity Extension Press, University of Saskatchewan, Saskatoon, Canada, Vol. 5, pp. 1–235.Google Scholar
  94. Michelmore, R.W., I. Paran & R.V. Kesseli, 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88: 9828–9832.Google Scholar
  95. Mingeot, D., N. Chantret, P.V. Baret, A. Dekeyser, N. Boukhatem, P. Sourdille, G. Doussinault & J.M. Jacquemin, 2002. Mapping QTL involved in adult plant resistance to powdery mildew in the winter wheat line RE714 in two susceptible genetic backgrounds. Plant Breed 121: 133–140.Google Scholar
  96. Mohler, V., S.L.K. Hsam, F.J. Zeller & G. Wenzel, 2001. An STS marker distinguishing the rye-derived powdery mildewresistance alleles at the Pm8/Pm17 locus of common wheat. Plant Breed 120: 448–450.Google Scholar
  97. Mohler, V. & A. Jahoor, 1996. Allele specific amplification of poly-morphic sites for the detection of powdery mildew resistance loci in cereals. Theor Appl Genet 93: 1078–1082.Google Scholar
  98. Moullet, O., H.B. Zhang & E.S. Lagudah, 1999. Construction and characterisation of a large DNA insert library from the D genome of wheat. Theor Appl Genet 99: 303–313.Google Scholar
  99. Neu, C., N. Stein & B. Keller, 2002. Genetic mapping of the Lr20– Pm1 resistance locus reveals suppressed recombination on chro-mosome arm 7AL in hexaploid wheat. Genome 45: 737–744.Google Scholar
  100. Olson, M., L. Hood, C. Cantor & D. Doststein, 1989. A common language for physical mapping of the human genome. Science 254: 1434–1435.Google Scholar
  101. Paran, I. & R.W. Michelmore, 1993. Development of reliable PCR-based markers linked to downy mildewresistance genes in lettuce. Theor Appl Genet 85: 985–993.Google Scholar
  102. Peusha, H., T. Enno & O. Priilinn, 2000. Chromosome location of powdery mildew resistance genes and cytogenetic analysis of meiosis in common wheat cultivar Meri. Hereditas 132: 29–34.Google Scholar
  103. Peusha, H., S.L.K. Hsam & F.L. Zeller, 1996. Chromosome location of powdery mildew resistance genes in common wheat (Triticum aestivum L. em. Thell.). 3. Gene Pm22 in cultivar Virest. Euphyt-ica 91: 149–152.Google Scholar
  104. Plaschke, J., M.W. Ganal & M.S. Röder, 1995. Detection of genetic diversity in closely related bread wheat using microsatellite mark-ers. Theor Appl Genet 91: 1001–1007.Google Scholar
  105. Powers, H.R. & W.J. Sando, 1960. Genetic control of the host– parasite relationship in wheat powdery mildew. Phytopathology 50: 454–457.Google Scholar
  106. Qi, L.L., M.S. Cao, P.D. Chen, W.L. Li & D.J. Liu, 1996. Identifica-tion, mapping, and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome 39: 191–197.Google Scholar
  107. Reader, S.M. & T.E. Miller, 1991. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild em-mer. Euphytica 53: 57–60.Google Scholar
  108. Ren, S.X., R.A. McIntosh, P.J. Sharp & T.T. The, 1996. A storage-protein marker associated with the suppressor of Pm8 for powdery mildew resistance in wheat. Theor Appl Genet 93: 1054–1060.Google Scholar
  109. Robe, P. & G. Doussinault, 1995. Genetic analysis of powdery mildew resistance of a winter-wheat line, RE714, and identifica-tion of a new specific-resistance gene. Plant Breed 114: 387–391.Google Scholar
  110. Roberts, J.J. & R.M. Caldwell, 1970. General resistance (slow mildewing) to Erysiphe graminis f. sp. tritici in 'Knox' wheat. Phytopathology 60: 1310.Google Scholar
  111. Röder, M.S., X.Q. Huang & M.W. Ganal, 2004. Wheat microsatel-lites in plant breeding – Potential and implications. In: H. Lörz & G. Wenzel (Eds.), Molecular Markers in Plant Breeding and Crop Improvement. Springer-Verlag, Heidelberg, in press.Google Scholar
  112. Röder, M.S., V. Korzun, B.S. Gill & M.W. Ganal, 1998a. The physical mapping of microsatellite markers in wheat. Genome 41: 278– 283.Google Scholar
  113. Röder, M.S., V. Korzun, K. Wendehake, J. Plaschke, M.H. Tixier, P. Leroy & M.W. Ganal, 1998b. A microsatellite map of wheat. Genetics 149: 2007–2023.Google Scholar
  114. Rong, J.K., E. Millet, J. Manisterski & M. Feldman, 2000. A new powdery mildew resistance gene: Introgression from wild emmer.222 into common wheat and RFLP-based mapping. Euphytica 115: 121–126.Google Scholar
  115. Sandhu, D.J., A. Champoux, S.N. Bondareva & K.S. Gill, 2001. Identification and physical localization of useful genes and mark-ers to a major gene-rich region on wheat group 1S chromosomes. Genetics 157: 1735–1747.Google Scholar
  116. Schwarz, G., W. Michalek, V. Mohler, G. Wenzel & A. Jahoor, 1999. Chromosome landing at the Mla locus in barley (Hordeum vulgare L.) by means of high-resolution mapping with AFLP markers. Theor Appl Genet 98: 521–530.Google Scholar
  117. Sears, E.R., 1954. The aneuploids of common wheat. Res Bull 572, Univ Miss, Coll Agric Exp Stn. 59 pp.Google Scholar
  118. Sears, E.R. & L.W. Briggle, 1969. Mapping the gene Pm1 for re-sistance to Erysiphe graminis f. sp. tritici on chromosome 7A of wheat. Crop Sci 9: 96–97.Google Scholar
  119. Schönfeld, M., A. Ragni, G. Fischbeck & A. Jahoor, 1996. RFLP mapping of three newloci for resistance genes to powdery mildew (Erysiphe graminis f. sp. hordei) in barley. Theor Appl Genet 93: 48–56.Google Scholar
  120. Shaner, G., 1973. Evaluation of slow-mildewing resistance of Knox wheat in the field. Phytopathology 63: 867–872.Google Scholar
  121. Shen, Q.H., F. Zhou, S. Bieri, T. Haizel, K. Shirasu & P. Schulze-Lefert, 2003. Recognition specificity and RAR1/SGT1 depen-dence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell 15: 732–744.Google Scholar
  122. Shi, Z.X., X.M. Chen, R.F. Line, H. Leung & C.R. Wellings, 2001. Development of resistance gene analog polymorphism markers for the Yr9 gene resistance to wheat stripe rust. Genome 44: 509– 516.Google Scholar
  123. Shi, A.N., S. Leath & J.P. Murphy, 1998. A major gene for pow-dery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology 88: 144–147.Google Scholar
  124. Singrün, Ch., S.L.K. Hsam, L. Hartl, F.J. Zeller & V. Mohler, 2003. Powdery mildewresistance gene Pm22 in cultivar Virest is a mem-ber of the complex Pm1 locus in common wheat (Triticum aes-tivum L. em Thell.). Theor Appl Genet 106: 1420–1424.Google Scholar
  125. Smith, D.B. & R.B. Flavell, 1975. Characterization of the wheat genome by renaturation kinetics. Chromosoma 50: 223– 242.Google Scholar
  126. Song, Q.J., E.W. Fickus & P.B. Cregan, 2002. Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet 104: 286–293.Google Scholar
  127. Stephenson, P., G. Bryan, J. Kirby, A. Collins, K. Devos, C. Busso & M. Gale, 1998. Fifty new microsatellite loci for the wheat genetic map. Theor Appl Genet 97: 946–949.Google Scholar
  128. Spielmeyer, W., L. Huang, H. Bariana, A. Laroche, B.S. Gill & E.S. Lagudah, 2000. NBS-LRR sequence family is associated with leaf and stripe rust resistance on the end of homoeologous chromosome group 1S of wheat. Theor Appl Genet 101: 1139– 1144.Google Scholar
  129. Sourdille, P., P. Robe, M.-H. Tixier, G. Doussinault, M.-T. Pavoine & M. Bernard, 1999. Location of Pm3g,apowdery mildew re-sistance allele in wheat, by using a monosomic analysis and by identifying associated molecular markers. Euphytica 110: 193– 198.Google Scholar
  130. Stein, N., C. Feuillet, T. Wicker, E. Schlagenhauf & B. Keller, 2000. Subgenome chromosome walking in wheat: A 450 kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (T. aestivum L.). Proc Natl Acad Sci USA 97: 13436–13441.Google Scholar
  131. Tanksley, S.D. & J.C. Nelson, 1996. Advanced backcross QTL anal-ysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92: 191–203.Google Scholar
  132. Tao, W., D. Liu, J. Liu, Y. Feng & P. Chen, 2000. Genetic mapping of the powdery mildew resistance gene Pm6 in wheat by RFLP analysis. Theor Appl Genet 100: 564–568.Google Scholar
  133. The, T.T., R.A. McIntosh & F.G.A. Bennett, 1979. Cytogenetical studies in wheat. IX. Monosomic analysis, telocentric mapping and linkage relationship of gene Sr21, Pm4 and Mle. Aust J Biol Sci 32: 115–125.Google Scholar
  134. Tosa, Y. & K. Sakai, 1990. The genetics of resistance of hexaploid wheat to the wheatgrass powdery mildew fungus. Genome 33: 225–230.Google Scholar
  135. Tosa, Y., H. Tokunaga & H. Ogura, 1988. Identification of a gene for resistance to wheatgrass powdery mildew fungus in the common wheat cultivar Chinese Spring. Genome 30: 612–614.Google Scholar
  136. Tosa, Y., H. Tsujimoto & H. Ogura, 1987. A gene involved in the re-sistance of wheat to wheatgrass powdery mildewfungus. Genome 29: 850–852.Google Scholar
  137. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res 21: 4407–4414.Google Scholar
  138. Wei, F., K. Gobelman-Werner, S.M. Morroll, J. Kurth, L. Mao, R. Wing, D. Leister, P. Schulze-Lefert & R.P. Wise, 1999. The Mla (powdery mildew) resistance cluster is associated with three NBS-LRRgene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153: 1929–1948.Google Scholar
  139. Welsh, J. & M. McClelland, 1990. Fingerprinting genomes us-ing PCR with arbitrary primers. Nucleic Acids Res 19: 861– 866.Google Scholar
  140. Wicker, T., N. Stein, L. Albar, C. Feuillet, E. Schlagenhauf & B. Keller, 2001. Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J 26: 307–316.Google Scholar
  141. Williams, G.K., A.R. Kubelik, J.L. Kenneth, A. Rafalski & V.T. Scott, 1990. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18: 6531– 6535.Google Scholar
  142. Wricke, G., P. Dill & P. Senft, 1996. Linkage between a major gene for powdery mildew resistance and an RFLP marker on chromosome 1R of rye. Plant Breed 115: 71–73.Google Scholar
  143. Xie, C., Q. Sun, Z. Ni, T. Yang, E. Nevo & T. Fahima, 2003. Chromo-somal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite mark-ers. Theor Appl Genet 106: 341–345.Google Scholar
  144. Yahiaoui, N., P. Srichumpa, R. Dudler & B. Keller, 2004. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 34: 528–538.Google Scholar
  145. Yamamoto, T., Y. Kuboki, S.Y. Lin, T. Sasaki & M. Yano, 1998. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, control-ling heading date of rice, as single Mendelian factors. Theor Appl Genet 97: 37–44.Google Scholar
  146. Yan, G.P., X.M. Chen, R.F. Line & C.R. Wellings, 2003. Resistance gene-analog polymorphism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust. Theor Appl Genet 106: 636–643.Google Scholar
  147. Yano, M., Y. Katayose, M. Ashikari, U. Yamanouchi, L. Monna, T. Fuse, T. Baba, K. Yamamoto, Y. Umehara, Y. Nagamura & T. Sasaki, 2000. Hd1,amajor photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12: 2473–2484.Google Scholar
  148. Yu, Y.G., G.R. Buss & M.A. Saghai Maroof, 1996. Isolation of a su-perfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci USA 93: 11751–11756.Google Scholar
  149. Zeller, F.J. & S.L.K. Hsam, 1996. Chromosomal location of a gene suppressing powdery mildew resistance genes Pm8 and Pm17 in common wheat (Triticum aestivum L. em. Thell.). Theor Appl Genet 93: 38–40.Google Scholar
  150. Zeller, F.J. & S.L.K. Hsam, 1998. Progress in breeding for resis-tance to powdery mildew in common wheat (Triticum aestivum L.). In: A.E. Slinkard (Ed.), Proceedings of the 9th International Wheat Genet Symposium, University Extension Press, Saska-toon, Canada, Vol. 1, pp. 178–180.Google Scholar
  151. Zeller, F.J., X.Q. Huang, E.V. Paderina, A. Collaku, K. Kowalczyk, M. Aslam, H. Peusha & S.L.K. Hsam, 1998. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L. em. Thell.). XII. Cultivars and landraces grown in Mediterranean countries. Plant Genet Resources Newslett 116: 5–8.Google Scholar
  152. Zeller, F.J., L. Kong, L. Hartl, V. Mohler & S.L.K. Hsam, 2002. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 7. Gene Pm29 in line Pova. Euphytica 123: 187–194.Google Scholar
  153. Zeller, F.J., J. Lutz, E.I. Reimlein, E. Limpert & J. Koening, 1993b. Identification of mildew resistance genes in common wheat (Triticum aestivum L.). II. French cultivars. Agronomie 13: 201– 207.Google Scholar
  154. Zheng, Y.L., M.C. Lou, C. Yen & J.L. Yang, 1992. Chromosome location of a new crossability gene in common wheat. Wheat Inform Service 75: 36–40.Google Scholar
  155. Zeller, F.J., J. Lutz & U. Stephan, 1993a. Chromosome location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.). 1. Mlk and other alleles at the Pm3 locus. Euphytica 68: 223–229.Google Scholar
  156. Zhou, F., J. Kurth, F. Wei, C. Elliot, G. Valé, N. Yahiaoui, B. Keller, S. Somerville, R. Wise & P. Schulze-Lefert, 2001. Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling path-way. Plant Cell 13: 337–350.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Xiu-Qiang Huang
    • 1
  • Marion S. Röder
    • 1
  1. 1.Gene and Genome Mapping GroupInstitute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466GaterslebenGermany

Personalised recommendations