Euphytica

, Volume 137, Issue 3, pp 387–395

A germplasm stratification of taro (Colocasia esculenta) based on agro-morphological descriptors, validation by AFLP markers

  • J. Quero-Garcia
  • J.L. Noyer
  • X. Perrier
  • J.L. Marchand
  • V. Lebot
Article

Abstract

This paper presents a simple and practical method for stratifying taro germplasm based on morpho-agronomical characters. More than 450 accessions of taro collected throughout Vanuatu and established in a field collection were described using 19 descriptors. A hierarchical approach was used to stratify the agro-morphological variation. Three sampling strategies were tested and the variation captured within each sample was compared for the frequencies of characters. The first sample (S1) was randomly selected; the second sample (S2) was conducted within the subgroups produced by the stratification method, and the third sample (S3) was based on UPGMA clustering within each subgroup. AFLP markers were used to compare the diversity between S3 and a fourth sample (S4) that included the parents of the Vanuatu breeding programme, and more diversity was found in S3. AFLPs were found to be useful to validate the hierarchical approach used for stratification. These studies have confirmed the narrow genetic base of the Vanuatu taro germplasm. They have been useful for detecting duplicates and fingerprinting of accessions.

AFLP Colocasia esculenta core samples genetic variation germplasm stratification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crouch, H.K., J.H. Crouch, S. Madsen, D.R. Vuylsteke & R. Ortiz, 2000. Comparative analysis of phenotypic and genotypic diversity among plantain landraces (Musa spp., AAB group). Theor Appl Genet 101: 1056–1065.Google Scholar
  2. Felsenstein, J., 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791.Google Scholar
  3. Fregene, M., A. Bernal, M. Duque, A. Dixon & J. Tohme, 2000. AFLP analysis of African cassava (Manihot esculenta Crantz) germplasm resistant to the cassava mosaic disease (CMD). Theor Appl Genet 100(5): 678–685.Google Scholar
  4. Irwin, S.V., P. Kaufuis, K. Banks, R. de la Peña & J.J. Cho, 1998. Molecular characterization of taro (Colocasia esculenta) using RAPD markers. Euphytica 99(3): 183–189.Google Scholar
  5. Ivancic, A. & V. Lebot, 2000. The Genetics and Breeding of Taro. Séries Repères; Cirad, Montpellier, France.Google Scholar
  6. Kuruvilla, K.M. & A. Singh, 1981. Karyotypic and electrophoretic studies on taro and its origin. Euphytica 30: 405–413.Google Scholar
  7. Kreike, C.M., H.J. Van Eck & V. Lebot, 2003. Genetic diversity of taro (Colocasia esculenta (L.) Schott) in South-East Asia and the Pacific. Theor Appl Genet (in press).Google Scholar
  8. Lebeaux, M.O., 1985. ADDAD, Manuel De Référence Version 89.1. Association pour le Développement et la Diffusion de l'Analyse des Données, Paris.Google Scholar
  9. Lebot, V. & M. Aradhya, 1991. Isozyme variation in taro (Colo-casia esculenta) from Asia and Oceania. Euphytica 56: 55–66.Google Scholar
  10. Lebot, V., S. Hartati, N.T. Hue, N.V. Viet, N.H. Nghia, T. Okpul, J. Pardales, M.S. Prana, T.K. Prana, M. Thongjiem, C.M. Krieke, H. VanEck, T.C. Yap & A. Ivancic, 2002. Genetic variation in taro (Colocasia esculenta) in South East Asia and Oceania. In: Twelfth Symposium of the ISTRC. Potential of root crops for food and industrial resources. Sept. 10–16, 2000, Tsukuba, Japan, pp. 523–534.Google Scholar
  11. Mace, E. & I.D. Godwin, 2002. Development and characterization of polymorphic microsatellite markers in taro, Colocasia esculenta. Genome 45(5): 823–832.Google Scholar
  12. Malapa, R., G. Arnau, J-L. Noyer, J-L. Marchand & V. Lebot, 2003. Genetic Relationships between Dioscorea alata L. and D. nummularia Lam. as revealed by AFLP Marker Evidence. In: Darwin's Harvest Origins, Evolution, and Conservation of Crop Plants: A Molecular Approach. Columbia University Press, (in press).Google Scholar
  13. Ortiz, R., E.N. Ruiz-Tapia & A. MÚjica-Sánchez, 1998. Sampling strategy for a core collection of Peruvian quinoa germplasm. Theor Appl Genet 96: 475–483.Google Scholar
  14. Perrier X., A. Flori & F. Bonnot, 2003. Methods of data analysis. In: P. Hamon, M. Seguin, X. Perrier & J.C. Glaszmann (Eds.), Genetic Diversity of Cultivated Tropical Plants, pp. 31–63. Cirad, Montpellier, France.Google Scholar
  15. Quero-Garcia, J., 2000. Etude de la Structuration de la Variabilité G´enétique du Taro. MSc Report. INAPG, 31p.Google Scholar
  16. Rohlf, F.J., 1993. NTSYS-PC Numerical Taxonomy and Multivariate Analysis System. Version 1.8 Exeter Publ., Setauket, New York.Google Scholar
  17. Saitou, N. & M. Nei, 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.Google Scholar
  18. Sneath, P.H.A. & R.R. Sokal, 1973. Numerical Taxonomy, Freeman, San Francisco.Google Scholar
  19. Sokal, R.R. & C.D.A. Michener, 1958. A statistical method for eval-uating systematic relationships. Univ Kansas Sci Bull 38: 1409–1438.Google Scholar
  20. Yap, I.V. & R.J. Nelson, 1996. Winboot: A Program for Performing Bootstrap Analysis of Binary Data to Determine the Confidence Limits of UPGMA-based Dendrograms. IRRI Discussion paper series No. 14.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J. Quero-Garcia
    • 1
  • J.L. Noyer
    • 1
  • X. Perrier
    • 1
  • J.L. Marchand
    • 1
  • V. Lebot
    • 1
  1. 1.CIRAD, TA 70/16, 34398Montpellier Cedex 5France

Personalised recommendations