Advertisement

Euphytica

, Volume 137, Issue 3, pp 361–371 | Cite as

QTL analysis of morphological and developmental traits in the Ler × Cvi population of Arabidopsis thaliana

  • Champa Kumari Bandaranayake
  • Rachil Koumproglou
  • Xiao Yu Wang
  • Timothy Wilkes
  • Michael John Kearsey
Article

Abstract

QTL analysis of 16 morphological/developmental traits is reported for the Landsberg erecta×Cape Verde islands (Ler × Cvi) population of RILs, together with their genotypes for 16 SSR markers. A total of 43 QTL were found across all 5 chromosomes for the 16 traits analyzed; 8 QTL that control height, 19 QTL for leaf characters and 16 QTL for flowering characters. These QTL form six distinct clusters spread across chromosomes 1–4, while chromosome 5 has QTL along its length. We have confirmed four QTL identified by others, revealed several new QTL affecting flowering and height traits and demonstrated epistasis for several traits. We have identified several possible candidate genes for these QTL, some of which are potentially relevant to plant breeding aims.

flowering time height microsatellites QTL analysis recombination frequency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso-Blanco, C., A.J.M. Peeters, M. Koornneef, C. Lister, C. Dean, N. Bosch, J. Pot & T.R. Kuiper, 1998a. Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana eco-types and construction of a Ler/Cvi recombinant inbred line population. Plant J 14: 259–271.Google Scholar
  2. Alonso-Blanco, C., S. El-Din El-Assal, G. Coupland & M. Koornneef, 1998b. Analysis of natural allelic variation at flow-ering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. Genetics 149: 749–764.Google Scholar
  3. Ayoub, M., E. Armstrong, G. Bridger, M.G. Fortin & D.E. Mather, 2003. Marker-based selection in barley for a QTL region affecting alpha-amylase activity of malt. Crop Sci 43: 556–561.Google Scholar
  4. Bell, C.J. & J.R. Ecker, 1994. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19: 137–144.Google Scholar
  5. Bohuon, E.J.R., L.D. Ramsay, J.A. Craft, A.E. Arthur, D.J. Lydiate, D.F. Marshall & M.J. Kearsey, 1998. The association of flowering time QTL with duplicated regions and candidate loci in Brassica oleracea . Genetics 150: 393–401.Google Scholar
  6. Borevitz, J.O., J.N. Maloof, J. Lutes, T. Dabi, J.L. Redfern, G.T. Trainer, J.D. Werner, T. Asami, C.C. Berry, D. Weigel & J. Chory, 2002. Quantitative trait loci controlling light and hormone re-sponse in two accessions of Arabidopsis thaliana. Genetics 160: 683–696.Google Scholar
  7. Charcosset, A. & A. Gallais, 2002. Application of markers in selec-tion. In D. de Vienne (ed.), Science Publishers, Inc., NH, USA. Molecular Markers in Plant Genetics and Biotechnology, pp. 153–176.Google Scholar
  8. Clarke, J.H., R. Mithen, J.K.M. Brown & C. Dean, 1995. QTL analysis of flowering time in Arabidopsis thaliana. Mol Gen Genet 248: 278–286.Google Scholar
  9. EL-Assal, S., C. Alonso-Blanco, A.J.M. Peeters, V. Raz & M. Koorn-neef, 2001. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet 29: 435–440.Google Scholar
  10. EL-Assal, S., C. Alonso-Blanco, A.J.M. Peeters, V. Raz & M. Koorn-neef, 2002. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet 30: 123–123.Google Scholar
  11. Gawel, N.J. & R.L. Jarret, 1991. A modified CTAB DNA procedure for Musa and Ipomea. Plant Mol Biol 9: 262–266.Google Scholar
  12. Hittalmani, S., A. Parco, T.V. Mew, R.S. Zeigler & N. Huang, 2000. Fine mapping and DNA marker-assisted pyramiding of the three.371 major genes for blast resistance in rice. Theor Appl Genet 100: 1121–1128.Google Scholar
  13. Juenger, T., M. Purugganan & T.F.C. Mackay, 2000. Quantitative trait loci for floral morphology in Arabidopsis thaliana. Genetics 156: 1379–1392.Google Scholar
  14. Kearsey, M.J. & H.S. Pooni, 1998. The Genetical Analysis of Quan-titative Traits. Stanley Thornes (Publishers) Ltd., U.K.Google Scholar
  15. Kearsey, M.J. & V. Hyne, 1994. QTL analysis: A simple 'marker regression' approach. Theor Appl Genet 89: 698–702.Google Scholar
  16. Knapp, S.J., W.C. Bridges & D. Birkes, 1990. Mapping quantitative trait loci using molecular marker linkage maps. Theor Appl Genet 79: 583–592.Google Scholar
  17. Koornneef, M., C. Alonso-Blanco, H.B. Vries, C.J. Hanhart & A.J.M. Peeters, 1998. Genetic interactions among late flowering mutants of Arabidopsis. Genetics 148: 885–892.Google Scholar
  18. Kosambi, D.D., 1943. The estimation of map units from recombina-tion values. Ann Eugen Lond 12: 172–175.Google Scholar
  19. Koumproglou, R., T.M. Wilkes, P. Townson, X.Y. Wang, J. Beynon, H.S. Pooni, H.J. Newbury & M.J. Kearsey, 2002. STAIRS: A new genetic resource for functional genomic studies of Arabidopsis. Plant J 31: 1–12.Google Scholar
  20. Larkin, J.C., N. Young, M. Prigge & M.D. Marks, 1996. The control of trichome spacing and number in Arabidopsis. Development 122: 997–1005.Google Scholar
  21. Lister, C. & C. Dean, 1993. Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant J 4(4): 745–750.Google Scholar
  22. Lobin, W., 1983. The occurrence of Arabidopsis thaliana in the Cape Verde Islands. Arab Inf Serv 20: 119–123.Google Scholar
  23. Loudet, O., S. Chaillou, C. Camilleri, D. Bouchez & F. Daniel-Vedele, 2002. Bay-0 x Shahdara recombinant inbred line pop-ulation: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Retrieved from http://link.springer.de/link /service/journals.Google Scholar
  24. McCouch, S.R., X. Chen, O. Panaud, S. Temnykh, Y. Xu, Y.G. Cho, N. Huang, T. Ishii & M. Blair, 1997. Microsatellite marker devel-opment, mapping and applications in rice genetics and breeding. Plant Mol Biol 35: 89–99.Google Scholar
  25. Mitchell-Olds, T., 1996. Genetic constraints on life-history evolu-tion: Quantitative trait loci influencing growth and flowering in Arabidopsis thaliana. Evolution 50: 140–145.Google Scholar
  26. Morgante, M. & A.M. Olivieri, 1993. PCR-amplified microsatellites as markers in plant genetics. Plant J 3(1): 175–182.Google Scholar
  27. Powell, W., G.C. Machray & J. Provan, 1996. Polymorphism as re-vealed by simple sequence repeats. Trends Plant Sci 1: 215–222.Google Scholar
  28. Ray, A., J.D. Lang, T. Golden & S. Ray, 1996. Short integu-ment (SIN1), a gene required for ovule development in Ara-bidopsis, also controls flowering time. Development 122: 2631–2638.Google Scholar
  29. Redei, G.P., 1992. A heuristic glance at the past of Arabidopsis ge-netics. In: C. Koncz, N.-H. Chua & J. Schell (eds.), Methods in Arabidopsis Research, pp. 1–15. World Scientific Publishing Co. Pte. Ltd, Singapore.Google Scholar
  30. Robles, P., J.M. Perez-Perez, H. Candela, V. Quesada, J.M. Barrero, S. Jover-Gil, M.R. Ponce & J.L. Micol, 2001. Genetic architecture of leaf morphogenesis in Arabidopsis thaliana. Int J Dev Biol 45: S61–S62.Google Scholar
  31. Schiff, C.L., I.W. Wilson & S.C. Somerville, 2001. Polygenic pow-dery mildew disease resistance in Arabidopsis thaliana: Quantitative trait analysis of the accession Warschaul. Plant Pathol 50: 690–701.Google Scholar
  32. Soppe, W.J.J., S.E. Jacobsen & C. Alonso-Blanco, 2000. The late flowering phenotype of fwa mutants is caused by gain of function epigenetic alleles of a homeodomain gene. Mol Cell 6: 791–802.Google Scholar
  33. Stam, P., 1993. Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3: 739–744.Google Scholar
  34. Stratton, D.A., 1998. Reaction norm functions and QTL-environment interactions for flowering time in Arabidopsis thaliana. Heredity 81: 144–155.Google Scholar
  35. Van Ooijen, J.W., 1994. DrawMap: A Computer Program for Draw-ing Genetic Linkage Maps. J Hered 85(1): 66.Google Scholar
  36. Vander-Schaar, W., C. Alonso-Blanco, K.M. Leon, R.C. Jansen, J.W. Van Ooijen & M. Koornneef, 1997. QTL analysis of seed dor-mancy in Arabidopsis using recombinant inbred lines and MQM mapping. Heredity 79: 190–200.Google Scholar
  37. Ungerer, M.C., S.S. Halldorsdottir, J.L. Modiszewski, T.F.C. Mackay & M.D. Purugganan, 2002. Quantitative trait loci for inflores-cence development in Arabidopsis thaliana. Genetics 160: 1133–1151.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Champa Kumari Bandaranayake
    • 1
  • Rachil Koumproglou
    • 1
  • Xiao Yu Wang
    • 1
  • Timothy Wilkes
    • 1
  • Michael John Kearsey
    • 1
  1. 1.School of BiosciencesThe University of BirminghamBirmingham, B15 2TTU.K

Personalised recommendations