Advertisement

Euphytica

, Volume 137, Issue 3, pp 297–309 | Cite as

Environmental, phenotypic and genetic variation of wild barley (Hordeum spontaneum) from Israel

  • T.K. Vanhala
  • C.P.E. van Rijn
  • J. Buntjer
  • P. Stam
  • E. Nevo
  • H. Poorter
  • F.A. van Eeuwijk
Article

Abstract

Wild relatives of crop plants offer an attractive gene pool for cultivar improvement. We evaluated genetic and phenotypic variation for a set of 72 Israeli accessions of wild barley from 21 populations. These populations were grouped further into four ecotypes. In addition, environmental variables describing the local conditions for the populations were used to infer the environmental divergence. Genetic, phenotypic and environmental distances were estimated from the data and UPGMA dendrograms constructed. The results showed that genetic variation was larger between populations than within them, whereas for phenotypic measurements variation was larger within populations than between them. No significant correlation was found between genetic and phenotypic similarities, or between phenotypic and environmental similarities, whereas a weak correlation between genetic and environmental similarities was detected. Twenty-three AFLP-markers were identified to be ecotype specific. Chromosomal location was known for five of these markers. Four of the five ecotype specific markers were correlated with both phenotypic traits and environmental variables.

AFLP Hordeum spontaneum variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ausubel, F.M., R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith & K. Struhl, 1999. Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, 4th edn. Wiley, New York.Google Scholar
  2. Autrique, E., M.M. Nachit, P. Monneveux, S.T. Tanksley & M.E. Sorrells, 1999. Genetic diversity in durum wheat based on RFLPs, morphophysiological traits, and coefficient of parentage. Crop Sci 36: 735–742.Google Scholar
  3. Ayele, M., H. Tefera, K. Assefa & H.T. Nguyen, 1999. Genetic characterization of two Eragrostis species using AFLP and morphological traits. Hereditas 130: 33–40.Google Scholar
  4. Badr, A., K. Müller, R. Schäfer-Pregl, H. El-Rabey, S. Effgen, H.H. Ibrahim, C. Pozzi, W. Rohde & F. Salamini, 2000. On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17: 499–510.Google Scholar
  5. Baek, H.J., A. Beharav & E. Nevo, 2003. Ecological-Genomic diversity of microsatellites in wild barley, Hordeum spontaneum, populations in Jordan. Theor App Genet 106: 397–410.Google Scholar
  6. Baum, B.R., E. Nevo, D.A. Johnson & A. Beiles, 1997. Genetic diversity in wild barley (Hordeum spontaneum C. Koch) in the Near East: A molecular analysis using random amplified polymorphic DNA (RAPD) markers. Gen Res and Crop Evol 44: 147–157.Google Scholar
  7. Brown, A.H.D., E. Nevo, D. Zohary & O. Dagan, 1978. Genetic variation in natural populations of wild barley (Hordeum spontaneum). Genetica 49: 97–108.Google Scholar
  8. Buntjer, J.B., 2001. PhylTools; Phylogenetic Computer Tools V.1.32. Wageningen University and Research Centre, The Netherlands. http://www.dpw.wau.nl/pv/PUB/pt/Google Scholar
  9. Burstin, J. & A. Charcosset, 1997. Relationship between phenotypic and marker distances: Theoretical and experimental investigations. Heredity 79: 477–483.Google Scholar
  10. Ellis, R.P., B.P. Forster, D. Robinson, L.L. Handley, D.C. Gordon, J.R. Russell & W. Powell W, 2000. Wild barley: A source of genes for crop improvement in the 21st century? J Exp Bot 51: 9–17.Google Scholar
  11. Felsenstein, J., 1993. PHYLIP (Phylogeny Inference Package) Version 3.5c. Department of Genetics, University of Washington, Seattle http://evolution.gs.washington.edu/phylip.htmlGoogle Scholar
  12. Gordon, A.D., 1981. Classification. Chapman and Hall, London.Google Scholar
  13. Harlan, J.R. & D. Zohary, 1966. Distribution of wild wheats and barley. Science 153: 1074–1080.Google Scholar
  14. Huang, Q., Z. Lu, T. Krugman, T. Fahima, C. Guoxiong, M. Roder, E. Nevo & A. Korol, 2001. QTL analysis of drought resistance in wild barley, Hordeum spontaneum. Israel J Plant Sci 49: 159.Google Scholar
  15. Ivandic, V., C.A. Hackett, E. Nevo, R. Keith, W.T.B. Thomas & B. Foster, 2002. Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: Associations with ecology, geography and flowering time. Plant Mol Biol 48: 511–527.Google Scholar
  16. Manly, B., 1997. Randomization, Bootstrap and Monte Carlo Methods in Biology, 2nd edn. Chapman and Hall, London.Google Scholar
  17. Nei, M. & S. Kumar, 2000. Molecular Evolution and Phylogenetics. Oxford University Press, Oxford.Google Scholar
  18. Nevo, E., 1992. Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum,inthe Fertile Crescent. In: P. Shewry (ed.), Barley: Genetics, Molecular Biology and Biotechnology, pp. 19–43. C.A.B. International Wallingford, U.K.Google Scholar
  19. Nevo, E., 1998. Genetic diversity in wild cereals: Regional and local studies and their bearing on conservation ex-situ and in-situ. Genet Res Crop Evol 45: 355–370.Google Scholar
  20. Nevo, E., 2001. Evolution of genome-phenome diversity under environmental stress. Proc Natl Acad Sci USA 98: 6233–6240.Google Scholar
  21. Nevo, E., A. Beiles, Y. Gutterman, N. Storch & D. Kaplan, 1984. Genetic resources of wild cereals in Israel and vicinity. II. Phenotypic variation within and between populations of wild barley, Hordeum spontaneum. Euphytica 33: 737–756.Google Scholar
  22. Nevo, E., B. Baum, A. Beiles & D.A. Johnson, 1998. Ecological correlates of RAPD DNA diversity of wild barley, Hordeum spontaneum, in the fertile crescent. Gen Res Crop Evol 45: 151–159.Google Scholar
  23. Nevo, E., B.F. Carver & A. Beiles, 1991. Photosynthetic performance in wild emmer wheat, Triticum dicoccoider: Ecological and genetic predictability. Theor Appl Genet 81: 445–460.Google Scholar
  24. Nevo, E., D. Atsmon & A. Beiles, 1985. Protein resources in wild barley, Hordeum spontaneum, in Israel: predictive method by ecology and allozyme markers. Plant Syst Evol 150: 205–222.Google Scholar
  25. Nevo, E., D. Zohary, A.H.D. Brown & M. Haber, 1979. Genetic diversity and environmental associations of wild barley, Hordeum spontaneum,inIsrael. Evolution 33: 815–833.Google Scholar
  26. Page, R.D.M., 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357–358. http://taxonomy.zoology.gla.ac.uk/rod/treeview.htmlGoogle Scholar
  27. Pakniyat, H., W. Powell, E. Baird, L.L. Handley, D. Robinson, C.M. Scrimgeour, E. Nevo, C.A. Hackett, P.D.S. Caligari & B.P. Forster, 1997. AFLP variation in wild barley (Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography. Genome 40: 332–341.Google Scholar
  28. Palacios, C., S. Kresovich & F. González-Candelas, 1999. A population genetic study of the endangered plant species Limonium dufourii (Plumbaginaceae) based on amplified fragment length polymorphism (AFLP). Mol Ecol 8: 645–657.Google Scholar
  29. Pigliucci, M., M.E. Malvolti & S. Fineschi, 1991. Relationships between protein polymorphism and phenotypic variation in Populus deltoides Bartr. Hereditas 114: 79–84.Google Scholar
  30. Qi, X. & P. Lindhout, 1997. Development of AFLP markers in barleyz. Mol Gen Genet 254: 330–336.Google Scholar
  31. Poorter, H., C.P.E. van Rijn, T.K. Vanhala, K.J.F. Verhoeven, Y.E.M. de Jong, P. Stam & H. Lambers, 2004. A genetic analysis of relative growth rate and underlying components in Hordeum spontaneum. Submitted to Oecologia.Google Scholar
  32. Qi, X., P. Stam & P. Lindhout, 1998. Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theor Appl Genet 96: 376–384.Google Scholar
  33. Rouppe van der Voort, J.N.A.M., P. van Zandvoort, H.J. van Eck, R.T. Folkertsma, R.C.B. Hutten, J. Draaistra, F.J. Gommers, E. Jacobsen, J. Helder & J. Bakker, 1997. Use of allele specificity of comigrating AFLP markers to align genetic maps from different potato genotypes. Mol Gen Genet 255: 438–447.Google Scholar
  34. Russell, J.R., J.D. Fuller, M. Macaulay, B.G. Hatz, A. Jahoor, W. Powell & R. Waugh, 1997. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95: 714–722.Google Scholar
  35. Schut, J.W., X. Qi, P. Stam, 1997. Association between relationship measures based on AFLP markers, pedigree data and morphological traits in barley. Theor Appl Genet 95: 1161–1168.Google Scholar
  36. Tanksley, S.D. & S.R. McCouch, 1997. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277: 1063–1066.Google Scholar
  37. Turpeinen, T., T. Tenhola, O. Manninen, E. Nevo & E. Nissilä, 2001. Microsatellite diversity associated with ecological factors in Hordeum spontaneum populations in Israel. Mol Ecol 10: 1577–1591.Google Scholar
  38. Van Hintum, T.J.L., 1994. Drowning in the genepool; managing genetic diversity in genebank collections. Dissertation. Förvaltningsavdelnings Repro, Alnarp, Sweden.Google Scholar
  39. Van Rijn, C., I. Heersche, I. van Berkel, E. Nevo, H. Lambers, H. Poorter, 2000. Growth characteristics in Hordeum spontaneum populations from different habitats. New Phytologist 146: 471–481.Google Scholar
  40. Van Rijn, C., 2001. A physiological and genetic analysis of growth characteristics in Hordeum spontaneum. Dissertation. Ponsen and Looijen B.V., Wageningen, The Netherlands.Google Scholar
  41. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau M, 1995. AFLP: A new technique for DNA fingerprinting. Nucl Acids Res 23: 4407–4414.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • T.K. Vanhala
    • 1
  • C.P.E. van Rijn
    • 2
  • J. Buntjer
    • 3
  • P. Stam
    • 1
  • E. Nevo
    • 4
  • H. Poorter
    • 2
  • F.A. van Eeuwijk
    • 1
  1. 1.Laboratory of Plant Breeding, Department of Plant SciencesWageningen University, P.O. BoxAJ WageningenThe Netherlands
  2. 2.Plant EcophysiologyUtrecht University, P.O. BoxTB UtrechtThe Netherlands
  3. 3.Keygene NV, P.O. BoxAE WageningenThe Netherlands
  4. 4.Institute of EvolutionUniversity of HaifaHaifaIsrael

Personalised recommendations