, Volume 136, Issue 3, pp 265–277 | Cite as

Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across stress environments and tester background

  • R.S. Yadav
  • C.T. Hash
  • F.R. Bidinger
  • K.M. Devos
  • C.J. Howarth


A pearl millet mapping population from a cross between ICMB841 and 863B was studied for DNA polymorphism to construct a genetic linkage map, and to map genomic regions associated with grain and stover yield, and aspects of drought tolerance. To identify genomic regions associated with these traits, mapping population testcrosses of 79 F3 progenies were evaluated under post-flowering drought stress conditions over 2 years and in the background of two elite testers. A significant genotype × drought stress treatment interaction was evident in the expression of grain and stover yield in drought environments and in the background of testers over the 2 years. As a result of this, genomic regions associated with grain and stover yield and the aspects of drought tolerance were also affected: some regions were more affected by the changes in the environments (i.e. severity and duration of drought stress) while others were commonly identified across the drought stress environments and tester background used. In most instances, both harvest index and panicle harvest index co-mapped with grain yield suggesting that increased drought tolerance and yield of pearl millet that mapped to these regions was achieved by increased partitioning of dry matter from stover to the grains. Drought stress treatments, years and testers interactions on genomic regions associated with grain and stover yield of pearl millet are discussed, particularly, in reference to genetic improvement of drought tolerance of this crop using marker-assisted selection.

drought genetic mapping genotype × environment interaction genotype × tester interaction Pennisetum glaucum QTL × environment × tester background interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajmone Marson, P., C. Gorni, A. Chitto, R. Redaelli, R. van Vizk, P. Stam & M. Motto, 2001. Identification of QTLs for grain yield and grain-related traits of maize (Zea mays L.) using an AFLP map, different testers, and cofactor analysis. Theor Appl Genet 102: 230–243.Google Scholar
  2. Allouis, S., X. Qi, S. Lindup, M. D. Gale & K. M. Devos, 2001. Con-struction of BAC library of pearl millet, Pennisetum glaucum. Theor Appl Genet 102:1200–1205.Google Scholar
  3. Austin, D. F., M. Lee, R. V. Lance & A. R. Hallauer, 2000. Genetic mapping in maize with hybrids progeny across testers and gener-ations: grain yield and grain moisture. Crop Sci 40:30–39.Google Scholar
  4. Beavis, W. D., O. S. Smith, D. Grant & R. Fincher, 1994. Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci 34:882–896.Google Scholar
  5. Bidinger, F. R., R. B. Musgrave & R. A. Fischer, 1977. Contribution of stored pre-anthesis assimilates to grain yield in wheat and barley. Nature (London) 270:431–433.Google Scholar
  6. Bidinger, F. R., V. Mahalakshmi & G. D. P. Rao, 1987. Assessment of drought resistance in pearl millet [Pennisetum americanum (L.) Leeke]. 1. Factors affecting yield under stress. Aust J Agric Res 38: 37–48.Google Scholar
  7. Blum, A., 1988a. Plant Breeding for Stress Environments. CRC Press, Florida.Google Scholar
  8. Blum, A., 1988b. Improving wheat grain filling under stress by stem reserve mobilization. Euphytica 100:77–83.Google Scholar
  9. Busso, C. S., C. J. Liu, C. T. Hash, J. R. Witcombe, K. M. Devos, J. M. J. de Wet & M. D. Gale, 1995. Analysis of recombination rate in female and male gametogenesis in pearl millet (Pennisetum amer-icanum) using RFLP markers. Theor Appl Genet 90:242–246.Google Scholar
  10. Ceccarelli, S. & S. Grando, 1996. Drought as a challenge for the plant breeder. Pl Growth Reg 20:149–155.Google Scholar
  11. Devos, K. M., T. S. Pittaway, A. Reynolds & M. D. Gale, 2000. Com-parative mapping reveals a complex relationship between the pearl millet genome and those of foxtail millet and rice. Theor Appl Genet 100:190–198.Google Scholar
  12. Dudley, J. W., 1993. Molecular markers in plant improvements: ma-nipulation of genes affecting quantitative traits. Crop Sci 33:660–668.Google Scholar
  13. Fusell, L. K., F. R. Bidinger & P. Bieler, 1991. Crop physiology and breeding for drought tolerance: research and development. Field Crops Res 27:183–199.Google Scholar
  14. Hayes, P. M., B. H. Liu, S. J. Knapp, F. Q. Chen, B. Jones, T. K. Blake, J. D. Franckowiak, D. C. Rasmusson, M. Sorrels, S. E. Ullrich, D. Wesenberg & A. Kleinhofs, 1993. Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet 87:329–401.Google Scholar
  15. Jones, E. S., C. J. Liu, M. D. Gale, C. T. Hash & J. R. Witcombe, 1995. Mapping quantitative trait loci for downy mildew resistance in pearl millet. Theor Appl Genet 91:448–456.Google Scholar
  16. Kebede, H., P. K. Subudhi, D. T. Rosenow & H. T. Nguyen, 2001. Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103: 266–276.Google Scholar
  17. Lander, E. S., P. Green, J. Abrahamson, A. Barlow, M. J. Daly, S. E. Lincoln & L. Newburg, 1987. Mapmaker: an interactive com-puter package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181.Google Scholar
  18. Lander, E. S. & D. Botstein, 1989. Mapping Mendelian factors un-derlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.Google Scholar
  19. Liu, C. J., J. R. Witcombe, T. S. Pittaway, M. Nash, C. T. Hash, C. S. Busso & M. D. Gale, 1994. An RFLP-based genetic map of pearl millet (Pennisetum glaucum). Theor Appl Genet 89:481–487.Google Scholar
  20. Lee, M., 1995. DNA markers and plant breeding programs. Adv Agron 55:265–344.Google Scholar
  21. L¨ubberstedt, T., A. E. Melchinger, C. C. Sch¨ on, U. H. Friedrich & D. Klein, 1997. QTL mapping in testcrosses of European flint lines of maize. 1. Comparison of different testers for forage yield traits. Crop Sci 37:921–931.Google Scholar
  22. Passioura, J. B., 1977. Grain yield, harvest index, and water use of wheat. J Aust Institute Agric Sci 43:117–120.Google Scholar
  23. Passioura, J. B., 1996. Drought and drought tolerance. Pl Growth Reg 20: 79–83.Google Scholar
  24. Qi, X., S. Lindup, T. S. Pittaway, S. Allouis, M. D. Gale & K. M. Devos, 2001. Development of simple sequence repeat markers from bacterial artificial chromosomes without subcloning. Biotechniques 31: 355–362.Google Scholar
  25. Ribaut, J. M., C. Jiang, D. Gonzalez de Leon, G. O. Edmeades & D. Hoisington, 1997. Identification of quantitative traits loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896.Google Scholar
  26. SAS Institute, 1989. SAS/Stat User's Guide, Version 6, 4th edn., Vols. 1 & 2. SAS Institute, Cary, NC.Google Scholar
  27. Schneider, K. A., M. E. Brothers & J. D. Kelly, 1997. Marker-assisted selection to improve drought resistance in common bean. Crop Sci 37:51–60.Google Scholar
  28. Singh, S. D., P. Singh, K. N. Rai & D. J. Andrews, 1990. Regis-tration of ICMA841 and ICMB841 pearl millet parental lines with A1 cytoplasmic–genic male sterility system. Crop Sci 30: 1378.Google Scholar
  29. Slafer, G. A. & J. L. Araus, 1998. Improving wheat responses to abiotic stress. In: Proc 9th International Wheat Genetics Symposium, Saskatoon, Canada, Vol. 1, 201–213.Google Scholar
  30. Tanksley, S. D., N. D. Young, A. H. Paterson & M. W. Bonierbale, 1989. RFLP mapping in plant breeding: new tools for an old science. Bio/Technology 7:257–264.Google Scholar
  31. Teulat, B., O. Merah, I. Souyris & D. This, 2001. QTLs for agronomic traits from a Mediterranean barley progeny grown in several en-vironments. Theor Appl Genet 103:774–787.Google Scholar
  32. Tuinstra, M. R., E. M. Grote, P. B. Goldsbrough & G. Ejeta, 1997. Genetic analysis of post-flowering drought tolerance and compo-nents of grain development in Sorghum bicolor (L.) Moench. Mol Breed 3:439–448.Google Scholar
  33. van Oosterom, E. J., F. R. Bidinger, V. Mahalakshmi & K. P. Rao, 1996. Effect of water availability patterns on yield of pearl millet in semi-arid tropical environments. Euphytica 89:165–173.Google Scholar
  34. Yadav, R. S., C. T. Hash, F. R. Bidinger, G. P. Cavan & C. J. Howarth, 2002. Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought stress conditions. Theor Appl Genet 104:67–83.Google Scholar
  35. Yadav, R. S., F. R. Bidinger, C. T. Hash, Y. P. Yadav, S. K. Bhatnagar & C. J. Howarth, 2003. Mapping and characterisation of QTL E interactions for traits determining grain and stover yield in pearl millet. Theor Appl Genet 106:512–520.Google Scholar
  36. Yan, J., J. Zhu, C. He, M. Benmoussa & P. Wu, 1999. Molecular marker-assisted dissection of genotype environment interaction for plant type traits in rice (Oryza sativa L.). Crop Sci 39:538–544.Google Scholar
  37. Zhu, J., 1998. Mixed model approaches for mapping quantitative trait loci. Heriditas (Beijing) 20(Sup):137–138.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • R.S. Yadav
    • 1
  • C.T. Hash
    • 2
  • F.R. Bidinger
    • 2
  • K.M. Devos
    • 3
  • C.J. Howarth
    • 4
  1. 1.Institute of Grassland and Environmental ResearchUK.
  2. 2.International Crops Research Institute for the Semi-Arid TropicsIndia
  3. 3.John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK; Department of Crop and Soil Sciences and Department of Plant BiologyThe University of GeorgiaAthensU.S.A
  4. 4.Institute of Grassland and Environmental ResearchUK

Personalised recommendations