Euphytica

, Volume 136, Issue 1, pp 37–44 | Cite as

Employment of flanking codominant STS markers to estimate allelic substitution effects of a nematode resistance locus in carrot

  • L.S. Boiteux
  • J.R. Hyman
  • I.C. Bach
  • M.E.N. Fonseca
  • W.C. Matthews
  • P.A. Roberts
  • P.W. Simon
Article

Abstract

In carrot, two codominant sequence-tagged site (STS) markers, flanking in tight linkage the Meloidogyne javanica resistance (Mj-1) locus, were employed to investigate the association between expression of resistance and locus dosage. Phenotypic expression of homozygous resistant (R); heterozygous; and homozygous susceptible (S) individuals in an F2 population of 396 F2 plants from ‘Brasília-1252’ (R) × ‘B6274’ (S) was estimated for three resistance criteria: total egg production per plant (TEP), egg production per gram of fibrous root (EPG) and root gall index (RGI). The homozygous resistant class had average values of 403.9 for TEP; 147.5 for EPG and 0.8 for RGI. The heterozygous class had 1,673; 477.3; and 0.16 whereas the homozygous susceptible class had 68,604; 11,877; and 2.54, respectively. The dominance ratio (d/a) indicated that genomic region(s) derived from the resistant parent encompass genetic factor(s) with almost complete dominance for RGI (d/a = 0.93–0.94) and incomplete dominance for transformed (TEP)0.25 and (EPG)0.25 (d/a = 0.63–0.65). Broad sense heritabilities were high varying from 72.9% for (EPG)0.25 to 86.0% for RGI. Narrow sense heritability values ranged from 55.9% for RGI to 64.3%for (TEP)0.25. Highly significant orthogonal contrasts were observed between homozygous resistant vs. heterozygous for (TEP)0.25 and (EPG)0.25. Marker-assisted selection could greatly facilitate the incorporation of the Mj-1 allele in both male-fertile and male-sterile counterpart lines in order to obtain F1 hybrids with the most effective levels of resistance.

Daucus carota markers Meloidogyne javanica resistance root-knot nematode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boiteux, L.S. & P.W. Simon, 2002. Breeding for Disease Resistance in Carrots, pp. 7–8. In: Compendium of Umbelliferous Crop Diseases. APS Press, Saint Paul-MN, USA.Google Scholar
  2. Boiteux, L.S., 2000. Characterization of the Meloidogyne javanica resistance locus employing molecular markers and isolation of candidate disease resistance loci in the carrot (Daucus carota L.) genome. Ph.D. thesis, University of Wisconsin, Madison, Wisconsin, USA.Google Scholar
  3. Boiteux, L.S., M.E.N. Fonseca & P.W. Simon, 1999. Effects of plant tissue and DNA purification method on RAPD-based genetic fingerprinting analysis in carrot. J Amer Soc Hort Sci 124: 32–38.Google Scholar
  4. Boiteux, L.S., J.G. Belter, P.A. Roberts & P.W. Simon, 2000. RAPD linkage map of the genomic region encompassing the Meloidogyne javanica resistance locus in carrot. Theor Appl Genet 100: 439–446.CrossRefGoogle Scholar
  5. Cruz, C.D. & A.J. Regazzi, 1994. Modelos Biométricos Aplicados ao Melhoramento Genético. Universidade Federal de Viç osa, Imprensa Universitária, Viç osa, Minas Gerais, Brazil.Google Scholar
  6. Dedryver, F., J. Jahier & T.E. Miller, 1990. Assessing the resistance to cereal root-knot nematode, Meloidogyne naasi, in a wheat line with the added chromosome arm 1HchS of Hordeum chilense Person. J Genet Breed 44: 291–295.Google Scholar
  7. Falconer, D.S. & T.F.C. Mackay, 1996. Introduction to Quantitative Genetics, Longman Group Limited, Essex, England.Google Scholar
  8. Hoagland, D.R. & D.I. Arnon, 1950. The water-culture method for growing plants without soil. California Agricultural Station Circular #347.Google Scholar
  9. Huang, S.P., 1986. Penetration, development, reproduction and Sex ratio of Meloidogyne javanica in three carrot cultivars. J Nematol 18: 408–412.Google Scholar
  10. Huang, S.P., P.T. Della Vecchia & P.E. Ferreira, 1986. Varietal response and estimates of heritability of resistance to Meloidogyne javanica in carrots. J Nematol 18: 496–501.Google Scholar
  11. Hussey, R.S. & K.R. Barker, 1973. A comparison of methods of collecting inocula of Meloidogyne spp. including a new technique. Plant Dis Rptr 57: 1025–1028.Google Scholar
  12. Matthews, W.C., P.W. Simon & P.A. Roberts, 1999. Influence of temperature on expression of resistance in carrots to Meloidogyne javanica. J Nematol 31: 553.Google Scholar
  13. Owmega, C.O. & P.A. Roberts, 1992. Inheritance of resistance to Meloidogyne spp. in common bean and the genetic basis of its sensitivity to temperature. Theor Appl Genet 83: 720–726.Google Scholar
  14. Simon, P.W., W.C. Matthews & P.A. Roberts, 2000. Evidence for simply inherited dominant resistance to Meloidogyne javanica in carrot. Theor Appl Genet 100: 735–742.CrossRefGoogle Scholar
  15. Tzortzakakis, E.A., D.L. Trudgill & M.S. Phillips, 1998. Evidence for a dosage effect of the Mi gene on partially virulent isolates of Meloidogyne javanica. J Nematol 30: 76–80.Google Scholar
  16. Young, N.D., 1996. QTL mapping and quantitative disease resistance in plants. Ann Rev Phytopathol 34: 479–501.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • L.S. Boiteux
    • 1
    • 2
  • J.R. Hyman
    • 3
  • I.C. Bach
    • 4
  • M.E.N. Fonseca
    • 1
    • 2
  • W.C. Matthews
    • 5
  • P.A. Roberts
    • 5
  • P.W. Simon
    • 3
  1. 1.Plant Breeding & Plant Genetics ProgramUniversity of WisconsinMadisonUSA
  2. 2.CNPH (Centro Nacional de Pesquisa de Hortaliças)/ EMBRAPA HortaliçasBrasília-DFBrazil
  3. 3.USDA/ARS, Vegetable Crops Research Unit, Department of HorticultureUniversity of WisconsinMadisonUSA
  4. 4.Department of Agricultural Sciences, Plant Breeding and Crop SciencesThe Royal Veterinary and Agricultural UniversityFrederiksberg C, CopenhagenDenmark
  5. 5.Department of NematologyUniversity of CaliforniaRiversideUSA

Personalised recommendations