Advertisement

Euphytica

, Volume 134, Issue 3, pp 335–345 | Cite as

Locating QTLs controlling constitutive root traits in the rice population IAC 165 × Co39

  • B. Courtois
  • L. Shen
  • W. Petalcorin
  • S. Carandang
  • R. Mauleon
  • Z. Li
Article

Abstract

Drought is an important constraint to productivity in rainfed rice environments. Improvement in the various components of rice drought tolerance is now possible through the identification and manipulation of DNA markers linked with genes controlling these quantitative traits. A recombinant inbred line population was derived from the cross IAC165 × Co39. A molecular map was built that contained 182 RFLP and microsatellite markers. Segregation distortions were limited to a few chromosomal segments. Constitutive root traits, including maximum root length, root thickness and root dry weight in various layers, were measured on 125 lines in a greenhouse replicated experiment. QTL analysis was performed using composite interval mapping. Between 1and 4 main effect QTLs, which explained individually between 5.5 and 24.8% of the variability, were identified for each trait. The most important genomic regions, which carried QTLs for several traits, were found on chromosomes 1, 4, 9, 11 and 12.The QTL locations were in good agreement with previous studies on these traits, confirming the value of the QTLs in a different genetic background. Epistasis represented a non-negligible component of the observed variability for some of the traits but was not detected for others. These results add to the understanding of the genetic control of root morphology in rice, which is necessary to strengthen marker-aided selection programs to improve varieties for water-limited environments.

drought tolerance O. sativa QTLs root depth root thickness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmadi, N., L. Albar, G. Pressoir, A. Pinel, D. Fargette & A. Ghesquière, 2002. Genetic basis and mapping of the resistance to rice yellow mottle virus. III. Analysis of QTL efficiency in introgressed progenies confirmed the hypothesis of complementary epistasis between two resistance QTLs. Theor Appl Genet 103: 1084-1092.Google Scholar
  2. Ali, M.L., M.S. Pathan, J. Zhang, G. Bai, S. Sarkarung & H.T. Nguyen, 2000. Mapping QTLs for root traits in a recombinant inbred population from two indica ecotypes in rice. Theor Appl Genet 101: 756-766.CrossRefGoogle Scholar
  3. Bajaj, S., J. Targolli, L.F. Liu, T.H. David Ho & R. Wu, 1999. Transgenic approaches to increase dehydration stress-tolerance in plants. Mol Breed 5: 493-503.CrossRefGoogle Scholar
  4. Basten, C.J., B.S. Weir & Z.B. Zeng, 2001. QTL Cartographer version 1.15. Department of Statistics, North Carolina State University, Raleigh, USA.Google Scholar
  5. Bach Jensen, L., B. Courtois, L. Shen, Z. Li, M. Olofsdotter & R. Mauleon, 2001. Locating genes controlling allelopathic effects against Echinochloa crus-galli in upland rice. Agron J 93: 21-26.CrossRefGoogle Scholar
  6. Causse, M., T.M. Fulton, Y.G. Cho, S.N. Ahn, J. Chungwongse, K. Wu, J. Xiao, Z. Yu, P.C. Ronald, S.E. Harrington, G. Second, S.R. McCouch & S.D. Tanksley, 1994. Saturated molecular map of the rice genome based on an interspecific back-cross population. Genetics 138: 1251-1274.PubMedGoogle Scholar
  7. Champoux, M.C., G. Wang, S. Sarkarung, D.J. Mackill, J.C. O'Toole, N. Huang & S.R. McCouch, 1995. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 90: 969-981.CrossRefGoogle Scholar
  8. Chen, X., Temnykh S., Xu Y., Cho Y.G. & McCouch S.R., 1997. Development of a microsatellite framework map providing genome-wide covering in rice. Theor Appl Genet 95: 553-567.CrossRefGoogle Scholar
  9. Churchill, G.A. & R.W. Doerge, 1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963-971.PubMedGoogle Scholar
  10. Courtois, B., W. Chaitep, S. Moolsri, P.K. Sinha, G. Trebuil & R. Yadav, 1996. Drought resistance and germplasm improvement: on-going research in the Upland Rice Consortium. In: C. Piggin, B. Courtois & V. Schmit (Eds.), Upland Rice Research in Partnership, pp. 154-175. IRRI Discussion Paper Series 16, Manila, Philippines.Google Scholar
  11. Gallais, A. & M. Rives, 1993. Detection, number and effect of QTLs for a complex character. Agronomie 13: 723-738.Google Scholar
  12. Garg, A.K., JK Kim, T.G. Owens, A.P. Ranwala, Y.D. Choi, L.V. Kochian & R.J. Wu, 2002. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci 99: 15898-15903.PubMedCrossRefGoogle Scholar
  13. Harushima, Y., M. Nakagahra, M. Yano, T. Sasaki & N. Kurata, 2002. Diverse variation of reproductive barriers in three intraspecific rice crosses. Genetics 160: 313-322.PubMedGoogle Scholar
  14. Hemamalini, G.S., H.E. Sashidar & S. Hittalmani, 2000. Molecular marker-assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice. Euphytica 112: 69-78.CrossRefGoogle Scholar
  15. Ito, O., J. O'Toole & B. Hardy, 1999. Genetic Improvement of Rice for Water-Limited Environments. Proceedings of the workshop on Genetic improvement of rice for water-limited environment, 1-3 December 1998, Los Baños, Philippines, 353 pp.Google Scholar
  16. Ingram, J. & D. Bartels, 1996. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Mol Biol 47: 377-403.CrossRefGoogle Scholar
  17. Jinks, J.L. & H.S. Pooni, 1981. Properties of pure breeding lines produced by dihaploidy, single seed descent and pedigree breeding. Heredity 46: 391-395.Google Scholar
  18. Kamoshita, A., L.J. Wade, M.L. Ali, M.S. Pathan, J. Zhang, S. Sarkarung & H.T. Nguyen, 2002a. Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions. Theor Appl Genet 104: 880-893.PubMedCrossRefGoogle Scholar
  19. Kamoshita, A., J. Zhang, J. Sipongco, S. Sarkarung, H.T. Nguyen & L.J. Wade, 2002b. Effect of phenotyping environment on identification of QTLs for rice root morphology under anaerobic conditions. Crop Sci 42: 255-265.PubMedCrossRefGoogle Scholar
  20. Kondo, M., M.V.R. Murty, D.V. Aragones, K. Okada, T. Winn & K.S. Kwak, 1999. Characteristics of the root system and water uptake in upland rice. In: O. Ito, J. O'Toole, B. Hardy (Eds.), Genetic Improvement of Rice for Water-Limited Environments, pp. 117-131. IRRI, Los Baños, Philippines.Google Scholar
  21. Lafitte, R.H., 1999. Genetic improvement of rice for water-limited environments: constraints and research opportunities. In: O. Ito, J. O'Toole, B. Hardy (Eds.), Genetic Improvement of Rice for Water-Limited Environments, pp. 347-353. IRRI, Los Baños, Philippines.Google Scholar
  22. Lafitte, R.H. & B. Courtois, 2002. Interpreting cultivar × environment interaction for yield in upland rice: assigning value to drought-adaptive traits. Crop Sci 42: 1409-1420.CrossRefGoogle Scholar
  23. Lander, E.S., P. Green, J. Abrahamson, A. Barlow, M. Daley, S. Lincoln & L. Newburg, 1987. Mapmaker, an interactive computer package for constructing primary genetic linkage maps of natural and experimental populations. Genomics 1: 174-181.PubMedCrossRefGoogle Scholar
  24. Ludlow, M.M. & R.C. Muchow, 1990. A critical evaluation of traits for improving crop yield in water-limited environments. Adv Agron 43: 107-153.Google Scholar
  25. Monna, L., H.X. Lin, S. Kojuma, T. Sasaki & M. Yano, 2002. Genetic dissection of a genomic region for a quantitative trait locus Hd3 into two loci H3a and Hd3b controlling heading date in rice. Theor Appl Genet 104: 772-778.PubMedCrossRefGoogle Scholar
  26. Mambani, B. & R. Lal, 1983. Response of upland rice cultivars to drought stress. III. Screening varieties by means of variable moisture along a toposequence. Plant Soil 73: 73-94.CrossRefGoogle Scholar
  27. Nemoto, K., S. Morita & T. Baba, 1995. Shoot and root development in rice related to the phyllochron. Crop Sci 35: 24-29.CrossRefGoogle Scholar
  28. O'Toole, J.C. & W.L. Bland, 1987. Genotypic variation in crop plant root systems. Adv Agron 41: 91-145.CrossRefGoogle Scholar
  29. Price, A. & B. Courtois, 1999. Mapping QTLs associated with drought resistance in rice: progress, problems and prospects. Plant Growth Reg 29: 123-133.CrossRefGoogle Scholar
  30. Price, A.H., K.A. Steele, B.J. Moore, P.B. Barraclough & L.J. Clark, 2000. A combined RFLP and AFLP linkage map of upland rice used to identify QTLs for root penetration ability. Theor Appl Genet 100: 49-56.CrossRefGoogle Scholar
  31. Price, A.H., K.A. Steele, B.J. Moore & R.G.W. Jones, 2002. Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes. II. Mapping QTL for root morphology and distribution. Field Crop Res 76: 25-43.CrossRefGoogle Scholar
  32. Price, A.H. & A.D. Tomos, 1997. Genetic dissection of root growth in rice. II.Mapping quantitative trait loci using molecular markers. Theor Appl Genet 95: 143-152.CrossRefGoogle Scholar
  33. Ray, J.D., L.X. Yu, S.R. McCouch, M.C. Champoux, G. Wang & H.T. Nguyen, 1996. Mapping quantitative trait loci associated with root penetration ability in rice. Theor Appl Genet 92: 627-636.CrossRefGoogle Scholar
  34. Sato, Y., R. Tshikawa & H. Morishima, 1990. Non random association of genes and characters found in indica × japonica hybrids of rice. Heredity 6: 75-79.Google Scholar
  35. Shen, L., B. Courtois, K. McNally, S. Robin & Z. Li., 2001. Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor Appl Genet 103: 75-83.CrossRefGoogle Scholar
  36. Temnykh, S., W.D. Park, N. Ayres, S. Cartinhour, N. Hauck, L. Lipovich, Y.G. Cho, T. Ishii & S.R. McCouch, 2000. Mapping and genome organization of microsatellite sequences in rice. Theor Appl Genet 100: 697-712.CrossRefGoogle Scholar
  37. Widavski, D.A. & J.C. O'Toole, 1990. Prioritizing the Rice Biotechnology Agenda for Eastern India. The Rockefeller Foundation, New-York, USA.Google Scholar
  38. Wang, D.L., Z. Li, A.H. Paterson & J. Zhu, 1999a. Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet 99: 1255-1264.CrossRefGoogle Scholar
  39. Wang, D.L., J. Zhu, Z. Li & A.H. Paterson, 1999b. User manual for QTLMapper Version 1.0. A computer software for mapping QTLs with main effects, epistatic effects and QTL × Environment interactions. Texas A&M University, USA.Google Scholar
  40. Xu, Y., L. Zhu, J. Xiao, N. Huang & S.R. McCouch, 1997. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid and recombinant inbred populations in rice. Mol Gen Genet 253: 535-545.PubMedCrossRefGoogle Scholar
  41. Yadav, R., B. Courtois, N. Huang & G. McLaren, 1997. Mapping genes controlling root morphology and root distribution in a double-haploid population of rice. Theor Appl Genet 94: 619-632.CrossRefGoogle Scholar
  42. Yamamoto, T., Y. Kuboki, S.Y. Lin, T. Sasaki & M. Yano, 1998. Fine mapping of quantitative traits loci Hd1, Hd2, Hd3 controlling heading date of rice as single Mendelian factors. Theor Appl Genet 97: 37-77.CrossRefGoogle Scholar
  43. Yoshida, S. & S. Hasegawa, 1982. The rice root system: its development and function. In: Drought Resistance in Crops with Emphasis on Rice, pp. 97-114. IRRI, Los Baños, Philippines.Google Scholar
  44. Zhang, J., H.G. Zeng, A. Aarti, G. Pantuwan, T.T. Nguyen, J.N. Tripathy, A.K. Sarial, S. Robin, R.C. Babu, B.D. Nguyen, S. Sarkarung, A. Blum & H.T. Nguyen, 2001a. Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. Theor Appl Genet 103: 19-29.CrossRefGoogle Scholar
  45. Zhang,W.P., X.Y. Shen, P. Wu, B. Hu & C.Y. Liao, 2001b. QTL and epistasis for seminal root length under a different water supply in rice. Theor Appl Genet 103: 118-123.CrossRefGoogle Scholar
  46. Zheng, Z.B., 1994. Precision mapping of quantitative trait loci. Genetics 136: 1457-1468.Google Scholar
  47. Zheng, H.G., R.C. Babu, M.S. Pathan, L. Ali, N. Huang, B. Courtois & H.T. Nguyen, 2000. Quantitative trait loci for root penetration ability and root thickness in rice: comparison of genetic backgrounds. Genome 43: 53-61.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • B. Courtois
    • 1
  • L. Shen
    • 2
  • W. Petalcorin
    • 1
  • S. Carandang
    • 1
  • R. Mauleon
    • 1
  • Z. Li
    • 1
  1. 1.International Rice Research InstituteMakati CityPhilippines
  2. 2.Cirad-BiotropMontpellier Cedex 5France

Personalised recommendations