, Volume 134, Issue 2, pp 149–159 | Cite as

Development of SCAR markers linked to a scald resistance gene derived from wild barley

  • R.K. Genger
  • A.H.D. BrownEmail author
  • W. Knogge
  • K. Nesbitt
  • J.J. Burdon


The F2 progeny of a third backcross(BC3) line, BC line 240, derived from a Turkish accession of wild barley (Hordeum vulgare ssp. spontaneum),segregated for resistance to scald (Rhynchosporium secalis) in a manner indicating the presence of a single dominant resistance gene. Two SCAR marker slinked to this resistance were developed from AFLP markers. Screens of disomic and ditelosomic wheat-barley addition lines with the SCAR markers demonstrated that the scald resistance gene is located in the centromeric region of barley chromosome 3H,a region previously reported to contain a major scald resistance locus, Rrs1. Markers that flank the Rrs1 locus were used to screen the wild barley-derivedBC3F2 population. These markers also flank the wild barley-derived scald resistance, indicating that it maps to the same locus as Rrs1; it may beallelic, or a separate gene within a complex locus. However, BC line 240 does not respond to treatment with the Rhynchosporium secalis avirulence factorNIP1 in the same way as the Rrs1-carrying cultivar Atlas46. This suggests that the scald resistance gene derived from wild barley confers a different specificity of response to theRrs1 allele in Atlas46.In order to increase the durability of scald resistance in the field, we suggest that at least two scald resistances should be combined into barley cultivars before release. The scald resistance gene described here will be of value in the Australian environment, and the several markers linked to it will facilitate pyramiding.

barley Hordeum vulgare spp. spontaneum resistance Rhynchosporium secalis scald SCAR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, D.C., A.H.D. Brown & J.J. Burdon, 1992. Genes for scaldresistance from wild barley (Hordeum vulgare ssp. spontaneum) and their linkage to isozyme markers. Euphytica 61: 225-231.CrossRefGoogle Scholar
  2. Abbott, D.C., J.J Burdon, A.H.D. Brown, B.J. Read & D. Bittisnich, 2000. The incidence of barley scald in cultivar mixtures. Aust J Agric Res 51: 355-360.CrossRefGoogle Scholar
  3. Abbott, D.C., J.J. Burdon, A.M. Jarosz, A.H.D. Brown, W.J. Muller & B.J. Read, 1991. The relationship between seedling infection types and field reactions to leaf scald in Clipper barley backcross lines. Aust J Agric Res 42: 801-809.CrossRefGoogle Scholar
  4. Abbott, D.C., E.S. Lagudah & A.H.D. Brown, 1995. Identification of RFLPs flanking a scald resistance gene on barley chromosome 6. J Hered 86: 152-154.PubMedGoogle Scholar
  5. Ali, S.M., A.H. Mayfield & B.G. Clare, 1976. Pathogenicity of 203 isolates of Rhynchosporium secalis on 21 barley cultivars. Physiol Plant Pathol 9: 135-143.CrossRefGoogle Scholar
  6. Barua, U.M., K.J. Chalmers, C.A. Hackett, W.T.B. Thomas, W. Powell & R. Waugh, 1993. Identification of RAPD markers linked to a Rhynchosporium secalis resistance locus in barley using near-isogenic lines and bulked segregant analysis. Hered 71: 177-184.Google Scholar
  7. Bjørnstad, A., V. Patil, A. Tekauz, A.G. Marøy, H. Skinnes, A. Jensen, H. Magnus & J. MacKey, 2002. Resistance to scald (Rhynchosporium secalis) in barley (Hordeum vulgare) studies by near-isogenic lines: I. Markers and differential isolates. Phytopathol 92: 710-720.Google Scholar
  8. Bockelman, H.E., E.L. Sharp & R.F. Eslick, 1977. Trisomic analysis of several scald and net blotch resistance genes. Barley Genet Newsl 7: 11-15.Google Scholar
  9. Brown, A.H.D., D.F. Garvin, J.J. Burdon, D.C. Abbott & B.J. Read, 1996. The effect of combining scald resistance genes on disease levels, yield and quality traits in barley. Theor Appl Genet 93: 361-366.CrossRefGoogle Scholar
  10. Brown, J.S., 1985. Pathogenic variation among isolates of Rhynchosporium secalis from cultivated barley growing in Victoria, Australia. Euphytica 34: 129-133.CrossRefGoogle Scholar
  11. Burdon, J.J., D.C. Abbott, A.H.D. Brown & J.S. Brown, 1994. Genetic structure of the scald pathogen (Rhynchosporium secalis) in South East Australia: implications for control strategies. Aust J Agric Res 45: 1445-1454.CrossRefGoogle Scholar
  12. Dyck, P.L. & C.W. Schaller, 1961a. Inheritance of resistance in barley to several physiologic races of the scald fungus. Can J Genet Cytol 3: 153-164.Google Scholar
  13. Dyck, P.L. & C.W. Schaller, 1961b. Association of two genes for scald resistance with a specific barley chromosome. Can J Genet Cytol 3: 165-169.Google Scholar
  14. Flor, H.H., 1971. Current status of the gene-for-gene concept. Ann Rev Phytopathol 9: 275-296.CrossRefGoogle Scholar
  15. Garvin, D.F., A.H.D. Brown & J.J. Burdon, 1997. Inheritance and chromosome locations of scald-resistance genes derived from Iranian and Turkish wild barleys. Theor Appl Genet 94: 1086-1091.CrossRefGoogle Scholar
  16. Garvin, D.F., A.H.D. Brown, H. Raman & B.J. Read, 2000. Genetic mapping of the barley Rrs14 scald resistance gene with RFLP, isozyme and seed storage protein markers. Plant Breed 119: 193-196.CrossRefGoogle Scholar
  17. Gierlich, A., K.A.E. van 't Slot, V.M. Li, C. Marie, H. Hermann & W. Knogge, 1999. Heterologous expression of the avirulence gene product, NIP1, from the barley pathogen Rhynchosporium secalis. Prot Expr Purif 17: 64-73.CrossRefGoogle Scholar
  18. Giorio, G., M. Gallitelli & F. Carriero, 1997. Molecular markers linked to rhizomania resistance in sugar beet, Beta vulgaris, from two different sources map to the same linkage group. Plant Breed 116: 401-408.CrossRefGoogle Scholar
  19. Goodwin, S.B., R.W. Allard & R.K. Webster, 1990. A nomenclature for Rhynchosporium secalis pathotypes. Phytopathol 80: 1330-1336.Google Scholar
  20. Graner, A., B. Foroughi-Wehr & A. Tekauz, 1996. RFLP mapping of a gene in barley conferring resistance to net blotch (Pyrenophora teres). Euphytica 91: 229-234.Google Scholar
  21. Graner, A. & A. Tekauz, 1996. RFLP mapping in barley of a dominant gene conferring resistance to scald (Rhynchosporium secalis). Theor Appl Genet 93: 421-425.CrossRefGoogle Scholar
  22. Habgood, R.M. & J.D. Hayes, 1971. The inheritance of resistance to Rhynchosporium secalis in barley. Hered 27: 25-37.Google Scholar
  23. Hahn, M., S. Jungling & W. Knogge, 1993. Cultivar-specific elicitation of barley defense reactions by the phytotoxic peptide NIP1 from Rhynchosporium secalis. Mol Plant Microbe Interact 6: 745-754.PubMedGoogle Scholar
  24. Islam, A.K.M.R., 1991. Coordinator's report: wheat-barley genetic stocks. Barley Genet Newsl 21: 109-111.Google Scholar
  25. Islam, A.K.M.R., K.W. Shepherd & D.H.B. Sparrow, 1981. Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Hered 46: 161-174.Google Scholar
  26. Jeger, M.J., D.G. Jones & E. Griffiths, 1981. Disease progress of non-specialised fungal pathogens in intraspecific mixed stands of cereal cultivars II. Field experiments. Ann Appl Biol 98: 199-210.Google Scholar
  27. Khan, T.N., 1986. Effects of fungicide treatments on scald (Rhynchosporium secalis (Oud.) J. Davis) infection and yield of barley in Western Australia. Aust J Exp Agric 26: 231-235.CrossRefGoogle Scholar
  28. Khan, T.N. & G.B. Crosbie, 1988. Effect of scald (Rhynchosporium secalis (Oud.) J. Davis) infection on some quality characteristics of barley. Aust J Exp Agric 28: 783-785.CrossRefGoogle Scholar
  29. Lagudah, E.S., R. Appels & A.H.D. Brown, 1991. The molecular-genetic analysis of Triticum tauschii, the D-genome donor to hexaploid wheat. Genome 34: 375-386.Google Scholar
  30. Lander, E.S., P. Green, J. Abrahamson, A. Barlow, M.J. Daly, S.E. Lincoln & L. Newburgh, 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174-181.PubMedCrossRefGoogle Scholar
  31. Liu, Z.W., M.R. Biyashev & M.A. Saghai Maroof, 1996. Development of simple sequence repeat DNA markers and their integration into a barley genetic linkage map. Theor & Appl Genet 93: 869-876.Google Scholar
  32. McDonald, B.A., R.W. Allard & R.K. Webster, 1988. Responses of two-, three-, and four-component barley mixtures to a variable pathogen population. Crop Sci 28: 447-452.CrossRefGoogle Scholar
  33. McDonald, B.A., J. Zhan & J.J. Burdon, 1999. Genetic structure of Rhynchosporium secalis in Australia. Phytopathol 89: 639-645.Google Scholar
  34. Parker, G.D. & P. Langridge, 2000. Development of a STS marker linked to a major locus controlling flour colour in wheat (Triticum aestivum L.). Mol Breed 6: 169-174.CrossRefGoogle Scholar
  35. Read, B.J., D.J. Luckett, R.A. Smithard & A.H.D. Brown, 1998. Hordeum vulgare (barley) cv. Tantangara. Aust J Exp Agric 38: 207.CrossRefGoogle Scholar
  36. Robbertse, B., M. van der Rijst, I.M.R. van Aarde, C. Lennox & P.W. Crous, 2001. DMI sensitivity and cross-resistance patterns of Rhynchosporium secalis isolates from South Africa. Crop Prot 20: 97-102.CrossRefGoogle Scholar
  37. Rohe, M., A. Gierlich, H. Hermann, M. Hahn, B. Schmidt, S. Rosahl & W. Knogge, 1995. The race-specific elicitor, NIP1, from the barley pathogen, Rhynchosporium secalis, determines avirulence on host plants of the Rrs1 resistance genotype. EMBO J 14: 4186-4177.Google Scholar
  38. Salamati, S. & A.M. Tronsmo, 1997. Pathogenicity of Rhynchosporium secalis isolates from Norway on 30 cultivars of barley. Plant Pathol 46: 416-424.CrossRefGoogle Scholar
  39. Salamati, S., J. Zhan, J.J. Burdon & B.A. McDonald, 2000. The genetic structure of field populations of Rhynchosporium secalis from three continents suggests moderate gene flow and regular recombination. Phytopathol 90: 901-908.Google Scholar
  40. Schweizer, G.F., M. Baumer, G. Daniel, H. Rugel & M.S. Roder, 1995. RFLP markers linked to scald (Rhynchosporium secalis) resistance gene Rh2 in barley. Theor Appl Genet 90: 920-924.CrossRefGoogle Scholar
  41. Smilde, W.D., A. Tekauz & A. Graner, 2000. Development of a high resolution map for the Rh and Pt resistance on barley chromosome 3H. Proc 8th Int Barley Genet Symp, pp. 178-180.Google Scholar
  42. Søgaard, B. & P. von Wettstein-Knowles, 1987. Barley: genes and chromosomes. Carlsberg Res Comm 52: 123-196.CrossRefGoogle Scholar
  43. Starling, T.M., C.W. Roane & K. Chi, 1971. Inheritance of reaction to Rhynchosporium secalis in winter barley cultivars. Proc 2nd Int Barley Genet Symp, pp. 513-519.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • R.K. Genger
    • 1
  • A.H.D. Brown
    • 1
    Email author
  • W. Knogge
    • 2
  • K. Nesbitt
    • 1
  • J.J. Burdon
    • 1
  1. 1.Centre for Plant Biodiversity ResearchCSIRO Plant IndustryCanberra ACTAustralia
  2. 2.The University of Adelaide, Waite CampusGlen OsmondAustralia

Personalised recommendations