Journal of Engineering Mathematics

, Volume 49, Issue 4, pp 339–358 | Cite as

Optimal Control of Polymer Morphologies

  • Martin BurgerEmail author
  • Vincenzo Capasso
  • Alessandra Micheletti


This paper is devoted to the optimal design of polymeric materials through control of the cooling during the crystallization process. The optimality is defined in terms of optimal mechanical properties, which are directly related to the morphology of the solidified polymeric material. As a characterizing mathematical entity to be controlled the contact interface density is introduced and its relations to other structure variables such as temperature and crystallinity is discussed. Not only a general optimal control approach is presented, but also some relevant special cases are discussed, for which a more detailed analysis can be carried out. It is shown that under reasonable conditions on the parameters and the process, these optimal-control problems have solutions in appropriate function spaces and the optimality conditions derived from the Lagrangian formulation are discussed. Finally, the numerical approximation is discussed and results for some test examples are presented.

contact interfaces crystallization morphology optimal cooling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Capasso, ed., Mathematical Modelling for Polymer Processing. Polymerization, Crystallization, Manufacturing. Heidelberg: Springer (2002) 320 pp.Google Scholar
  2. 2.
    M. Burger, Iterative regularization of an identification problem arising in polymer crystallization. SIAM J. Num. Anal.39 (2001) 1029-1055.Google Scholar
  3. 3.
    M. Burger, V. Capasso and H.W. Engl, Inverse problems related to crystallization of polymers. Inverse Problems15 (1999) 155-173.Google Scholar
  4. 4.
    E. Ratajski and H. Janeschitz-Kriegl, How to determine high growth speeds in polymer crystallization. Colloid Polymer Sci.274 (1996) 938-951.Google Scholar
  5. 5.
    P. Supaphol and J.E. Spruiell, Thermal properties and isothermal crystallization of syndiodactic polypropylenes: differential scanning calorimetry and overall crystallization kinetics. J. Appl. Polymer Sci.75 (2000) 44-59.Google Scholar
  6. 6.
    D.C. Bassett, Principles of Polymer Morphology.Cambridge: Cambridge University Press (1981) 251 pp.Google Scholar
  7. 7.
    D.W. Van Krevelen, Properties of Polymers.Amsterdam: Elsevier (1990) 875 pp.Google Scholar
  8. 8.
    L.H. Friedman and D.C. Chrzan, Scaling theory of the Hall-Petch relation for multilayers. Phys. Rev. Lett.81 (1998) 2715-2719.Google Scholar
  9. 9.
    M. Burger, V. Capasso and C. Salani,Modelling multi-dimensional crystallization of polymers in interaction with heat transfer. Nonlin. Anal. Real World Applic.3 (2002) 139-160.Google Scholar
  10. 10.
    V. Capasso and C. Salani, Stochastic birth-and-growth processes modelling crystallization of polymers in a spatially heterogenous temperature field. Nonlin. Anal. Real World Applic.1 (2000) 485-498.Google Scholar
  11. 11.
    M. Burger, V. Capasso and G. Eder, Modelling crystallization of polymers in temperature fields. Zeitschrift Angew. Math. Mech.82 (2002) 51-63.Google Scholar
  12. 12.
    B. Monasse and J.M. Haudin, Thermal dependence of nucleation and growth rate in polypropylene by nonisothermal calorimetry. Colloid Polymer Sci.264 (1986) 117-122.Google Scholar
  13. 13.
    M. Burger and V. Capasso, Mathematical modelling and simulation of non-isothermal crystallization of polymers. Math. Models Methods Appl. Sci.11 (2001) 1029-1053.Google Scholar
  14. 14.
    A. Friedman and J.L. Velazquez, A free boundary problem associated with crystallization of polymers in a temperature field. Indiana Univ. Math. J.50 (2001) 1609-1649.Google Scholar
  15. 15.
    V. Capasso, A. Micheletti and G. Eder, Polymer crystallization processes and incomplete Johnson-Mehl tesselations. In: L. Arkeryd, J. Bergh, P. Brenner and R. Pettersson (eds), Progress in Industrial Mathematics at ECMI 98.Stuttgart, Leipzig: Teubner (1999) pp. 130-137.Google Scholar
  16. 16.
    S.N. Chiu, Limit theorems for the time of completion of Johnson-Mehl tessellations. Adv. Appl. Prob.27 (1995) 889-910.Google Scholar
  17. 17.
    A. Micheletti and V. Capasso, The stochastic geometry of polymer crystallization processes. Stoch. Anal. Applic.15 (1997) 355-373.Google Scholar
  18. 18.
    J. Moeller, Random Johnson-Mehl tessellations. Adv. Appl. Prob.24 (1992) 814-844.Google Scholar
  19. 19.
    J. Moeller, Generation of Johnson-Mehl crystals and comparative analysis of models for random nucleation. Adv. Appl. Prob.27 (1995) 367-383.Google Scholar
  20. 20.
    V. Capasso and A. Micheletti, Local spherical contact distribution function and local mean densities for inhomogeneous random sets. Stochastics Stochastics Reports71 (2000) 51-67.Google Scholar
  21. 21.
    V. Capasso, A. Micheletti and M. Burger, Densities of n-facets of incomplete Johnson-Mehl tessellations generated by inhomogeneous birth-and-growth processes. Quaderno del Dipartimento di Matematica, Universita di Milano 38 (2001).Google Scholar
  22. 22.
    R.A. Adams. Sobolev Spaces.New York: Academic Press (1975) 268 pp.Google Scholar
  23. 23.
    L.C. Evans, Partial Differential Equations.Providence: AMS (1998) 662 pp.Google Scholar
  24. 24.
    M. Burger, Direct and Inverse Problems in Polymer Crystallization Processes.Linz: PhD-Thesis, University Linz (2000) 157 pp.Google Scholar
  25. 25.
    J.L. Lions and E. Magenes, Non-Homogenous Boundary Value Problems and Applications, Volume II.Berlin, Heidelberg, New York: Springer (1972) 242 pp.Google Scholar
  26. 26.
    M. Avrami, Kinetics of phase change I-III. J. Chem. Phys.7 (1939) 1103-1112; 8 (1940) 212-224; 9 (1941) 77-184.Google Scholar
  27. 27.
    A.N. Kolmogorov, On the statistical theory of the crystallization of metals. Bull. Acad. Sci. USSR, Math. Series1 (1937) 355-359.Google Scholar
  28. 28.
    G. Eder, Crystallization kinetic equations incorporating surface and bulk nucleation. Zeitschrift Angew. Math. Mech.76 (1996) S4, 489-492.Google Scholar
  29. 29.
    G. Eder, Fundamentals of structure formation in crystallizing polymers. In: K. Hatada, T. Kitayama and O. Vogl (eds), Macromolecular Design of Polymeric Materials.New York: Marcel Dekker (1997) pp. 761-782.Google Scholar
  30. 30.
    W. Schneider, A. Köppl and J. Berger, Non-isothermal crystallization. Crystallization of polymers. Int. Polymer Processing2 (1988) 151-154.Google Scholar
  31. 31.
    R.V. Gamkrelidze, Principles of Optimal Control Theory.New York, London: Plenum Press (1978) 175 pp.Google Scholar
  32. 32.
    G. Knowles, An Introduction to Applied Optimal Control.New York: Academic Press (1981) 180 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Martin Burger
    • 1
    Email author
  • Vincenzo Capasso
    • 2
  • Alessandra Micheletti
    • 2
  1. 1.Industrial Mathematics InstituteUniversity LinzAltenbergerstr. 69Austria
  2. 2.Milan Research Centre for Industrial and Applied MathematicsUniversità di MilanoMilanoItaly

Personalised recommendations