Journal of Engineering Mathematics

, Volume 47, Issue 3–4, pp 369–386 | Cite as

Blood-flow models of the circle of Willis from magnetic resonance data

  • Juan R. Cebral
  • Marcelo A. Castro
  • Orlando Soto
  • Rainald Löhner
  • Noam Alperin


Detailed knowledge of the cerebral hemodynamics is important for a variety of clinical applications. Cerebral perfusion depends not only on the status of the diseased vessels but also on the patency of collateral pathways provided by the circle of Willis. Due to the large anatomical and physiologic variability among individuals, realistic patient-specific models can provide new insights into the cerebral hemodynamics. This paper presents an image-based methodology for constructing patient-specific models of the cerebral circulation. This methodology combines anatomical and physiologic imaging techniques with computer simulation technology. The methodology is illustrated with a finite element model constructed from magnetic resonance image data of a normal volunteer. Several of the remaining challenging problems are identified. This work represents a starting point in the development of realistic models that can be applied to the study of cerebrovascular diseases and their treatment.

circle of Willis computational fluid dynamics hemodynamics magnetic resonance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. W. Petty, R. D. Brown, J. P. Whisnant, J.D. Sicks, W. M. O'Fallon and D.O. Wiebers, Ischemic stroke subtypes; a population-based study of functional outcome, survival, and recurrence. Stroke 31 (2000) 1062–1068.Google Scholar
  2. 2.
    M. Kluytmans, J. van der Grond, K.J. van Everdingen, C. J. M. Klijn, L.J. Kappelle and M.A. Viergever, Cerebral Hemodynamics in Relation to Patterns of Collateral Flow. Stroke 30 (1999) 1432–1439.Google Scholar
  3. 3.
    R. M. K. W. Lee, Morphology of cerebral arteries. Pharmac. Ther. 66 (1995) 149–173.Google Scholar
  4. 4.
    R. H. Kufahl and M. E. Clark, A Circle of Willis Simulation Using Distensible Vessels and Pulsatile Flow. J. Biomech. Engng. 107 (1985) 112–22.Google Scholar
  5. 5.
    J. R. Cebral, R. Löhner and J. E. Burgess, Computer Simulation of Cerebral Artery Clipping: Relevance to Aneurysm Neuro-Surgery Planning. In: E. Oñate, G. Bugeda and B. Suarez (eds.), Proc. ECCOMAS, Barcelona, Spain, Sept. 11–14 (2000).Google Scholar
  6. 6.
    A. Fernandez, T. David and M. D. Brown, Numerical models of autoregulation and blood flow in the cerebral circulation. Comp. Meth. Biomech. Engng. 5 (2002) 7–20.Google Scholar
  7. 7.
    F. T. Charbel, K.H. Guppy, M. Zhao and M.E. Clark, Computerized hemodynamic evaluation of the cerebral circulation for bypass. Neurosurg. Clin. N. Am. 12 (2001) 499–508.Google Scholar
  8. 8.
    M. L. Barr and J. A. Kierman, The Human Nervous System: an Anatomical Viewpoint. Philadelphia: Lippincott Co. (1993), 451 pp.Google Scholar
  9. 9.
    J. A. Moore, D. A. Steinman, D. WHoldsworth and C. R. Ethier, Accuracy of computational hemodynamics in complex arterial geometries reconstructed from magnetic resonance imaging. Ann. Biomed. Engng. 27 (1999) 32–41.Google Scholar
  10. 10.
    C. A. Taylor, M. T. Draney, J. P. Ku, D. Parker, B. N. Steele, K. Wang and C.K. Zarins, Predictive medicine: vomputational techniques in therapeutic decision-making. Comp. Assisted Surgery 4 (1999) 231–247.Google Scholar
  11. 11.
    S. Z. Zhao, X. Y. Xu, A. D. Hughes, S. A. Thom, A. V. Stanton, B. Ariff and Q. Long, Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J. Biomech. 33 (2000) 975–984.Google Scholar
  12. 12.
    J. R. Cebral, P. J. Yim, R. Löhner, O. Soto and P. L. Choyke, Blood flow modeling in carotid arteries using computational fluid dynamics and magnetic resonance imaging. Acad. Radiol. 9 (2002) 1286–1299.Google Scholar
  13. 13.
    P. J. Yim, J. R. Cebral, R. Mullick and P. J. Choyke, Vessel surface reconstruction with a tubular deformable model. IEEE Trans. Med. Imag. 20 (2001) 1411–1421.Google Scholar
  14. 14.
    N. J. Pelc, Flow quantification and analysis methods. MRI Clin. N. Am. 3 (1995) 413–424.Google Scholar
  15. 15.
    C. J. G. Bakker, R.M. Hoogeveen and M. A. Viergever, Construction of a protocol for measuring blood flow by two-dimensional phase-contrast MRA. J. Magn. Reson. Imaging 9 (1999) 119–217.Google Scholar
  16. 16.
    B. R. Mustert, D. M. Williams and M. R. Prince, In vitro model of arterial stenosis: correlation of MR signal dephasing and trans-stenotic pressure gradients. J. Magn. Reson. Imaging 16 (1998) 301–310.Google Scholar
  17. 17.
    S. J. Owen, A survey of unstructured mesh generation technology. Proc. 7th International Meshing Roundtable, Sandia National Lab. (1998) 239–267 ( Scholar
  18. 18.
    R. Löhner, Automatic unstructured grid generators. Finite Elem. Anal. Design 25 (1997) 111–134.Google Scholar
  19. 19.
    J. R. Cebral and R. Löhner, From medical images to anatomically accurate finite element grids. Int. J. Num. Meth. Engng. 51 (2001) 985–1008.Google Scholar
  20. 20.
    J. R. Cebral, Realistic modeling of arterial hemodynamics from anatomic and physiologic image data. In: R. C. Batra and E.G. Henneke (eds.), Proc. 14th U.S. National Congress in Theoretical and Applied Mechanics, Blacksburg, Virginia, June 23–28 (2002) p. 79.Google Scholar
  21. 21.
    J. R. Cebral, R. Löhner, P. L. Choyke and P. J. Yim, Merging of intersecting triangulations for finite element modeling. J. Biomech. 34 (2001) 815–819.Google Scholar
  22. 22.
    P. J. Yim, J. R. Cebral, R. Löhner, V. B. Ho and P. L. Choyke, Estimation of mechanical stress on the carotid artery. Biomed. Engng Annual Conf., Durham (N.C.), Oct 4–7 (2001).Google Scholar
  23. 23.
    G. Taubin, A signal processing approach to fair surface design. Comp. Graphics Proc. (1995) 351–358.Google Scholar
  24. 24.
    R. Löhner, Regridding surface triangulations. J. Comp. Phys. 126 (1996) 1–10.Google Scholar
  25. 25.
    J. Mazumdar. Biofluid Mechanics. Singapore: World Scientific (1992) 191 pp.Google Scholar
  26. 26.
    F. G. Basombrio, E. A. Dari, G. C. Buscaglia and R. A. Feijoo, Numerical experiments in complex haemodynamics flows. Non-Newtonian effects. Proc. XI Congress on Numerical Methods and Their Applications ENIEF, San Carlos de Bariloche, Argentina, Nov. 24–29 (2000).Google Scholar
  27. 27.
    K. Perktold. and G. Rappitsch, Mathematical modeling of local arterial flow and vessel mechanics. In: J. Crolet and R. Ohayon (eds.), Computational Methods for Fluid-Structure Interaction. Pitman Research Notes in Mathematics 306 (1994) pp. 230–245.Google Scholar
  28. 28.
    P. Neofitou and D. Drikakis, Non-Newtonian modeling effects on stenotic channel flows. In: E. Oñate, G. Bugeda and B. Suarez (eds.), Proc. ECCOMAS CFD, Swansea, Wales, U.K., Sept. 4–7 (2001).Google Scholar
  29. 29.
    O. Soto, R. Löhner, J. R. Cebral and R. Codina, A time-accurate implicit monolithic finite element scheme for incompressible flow problems. In: E. Oñate, G. Bugeda and B. Suarez (eds.), Proc. ECCOMAS CFD, Swansea, UK, Sept. 4–7 (2001).Google Scholar
  30. 30.
    Y. Saad, Iterative Methods for Sparse Linear Systems. Boston: PWS Pub. Co. (1996) 447 pp.Google Scholar
  31. 31.
    J. R. Cebral, R. Löhner, O. Soto, P. L. Choyke and P. J. Yim, Image-based finite element modeling of hemodynamics in stenosed carotid artery. Proc. SPIE Medical Imaging 4683 (2002) 297–304.Google Scholar
  32. 32.
    J. R. Cebral, P. J. Yim, R. Löhner, O. Soto, H. Marcos and P. L. Choyke, New methods for computational fluid dynamics of carotid artery from magnetic resonance angiography. Proc. SPIE Medical Imaging 4321 (2001) 177–187.Google Scholar
  33. 33.
    J. S. Stroud, S. A. Berger and D. Saloner, Numerical analysis of flow through a severely stenotic artery bifurcation. J. Biomech. Engng. 124 (2002) 9–20.Google Scholar
  34. 34.
    N. Alperin, S. Lee, PUBS: Pulsatile-based segmentation of lumens conductiong non-steady flow. Magn. Reson. Med. 49 (2003) 934–944.Google Scholar
  35. 35.
    J. R. Womersley, Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127 (1955) 553–563.Google Scholar
  36. 36.
    C. A. Taylor, T. J. R. Hughes and C. K. Zarins, Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Engng. 158 (1998) 155–196.Google Scholar
  37. 37.
    M. S. Olufsen, C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim and J. Larsen, Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Engng. 28 (2002) 1281–1299.Google Scholar
  38. 38.
    L. Formaggia, F. Nobile, A. Quarteroni and A. Veneziani, Multiscale modeling of the circulatory system: a preliminary analysis. Visual. Sci. 2 (1999) 75–83.Google Scholar
  39. 39.
    R. Karch, F. Neumann, M. Neumann and W. Schreiner, Staged growth of optimized arterial tree models. Ann. Biomed. Engng. 28 (2000) 495–511.Google Scholar
  40. 40.
    M. Zamir, On fractal properties of arterial trees. J. Theor. Biol. 197 (1999) 517–526.Google Scholar
  41. 41.
    F. Calamante, P. J. Yim and J. R. Cebral, Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics. NeuroImage 19 (2003) 342–353.Google Scholar
  42. 42.
    L. R. Caplan. Stroke: a clinical approach. Boston: Butterworths (1986) 343 pp..Google Scholar
  43. 43.
    J. S. Milner, J. A. Moore, B. K. Rutt and D. A. Steinman, Hemodynamics of human carotid artery bifurcations: computational studies in models reconstructed from magnetic resonance imaging of normal subjects. J. Vasc. Surg. 28 (1998) 143–156.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Juan R. Cebral
    • 1
  • Marcelo A. Castro
    • 1
  • Orlando Soto
    • 1
  • Rainald Löhner
    • 1
  • Noam Alperin
    • 2
  1. 1.School of Computational SciencesGeorge Mason UniversityFairfaxUSA
  2. 2.Department of RadiologyUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations