Journal of Engineering Mathematics

, Volume 47, Issue 3–4, pp 299–314 | Cite as

Cyclic strain in human carotid bifurcation and its potential correlation to atherogenesis: Idealized and anatomically-realistic models

  • M.R. Kaazempur-Mofrad
  • H.F. Younis
  • S. Patel
  • A. Isasi
  • C. Chung
  • R.C. Chan
  • D.P. Hinton
  • R.T. Lee
  • R.D. Kamm
Article

Abstract

Various mechanical phenomena are thought to contribute to the pathogenesis of atherosclerosis. Most finite-element analyses of arterial-wall mechanics to date have focused on the quantification of mechanical wall stresses, despite an abundance of experimental evidence suggesting that endothelial and smooth muscle cells readily respond to cyclic strain. In this study, we calculate the physiologic cyclic strains in the carotid bifurcation, a common site of disease. Several geometries are constructed in this study, namely (i) a 3-D, but idealized geometry of the human carotid bifurcation, (ii) 3-D subject-specific geometries based on in vivo images of healthy volunteers' carotid bifurcations, and (iii) 2-D models based on histology-derived patient-specific anatomy and intra-plaque components. Results in both types of 3-D model show that the highest variations in cyclic strain are found at the adjoining wall of the external-common carotid and at the carotid apex, both frequent sites of early inflammation, as well as immediately distal to the carotid bulb, a site of late-stage disease, suggesting that cyclic strain may play a role in inflammation in that region as well. The 2-D models of diseased arteries show generally muted cyclic strain, but also regions such as in the shoulder regions of a fibrous cap adjacent to a lipid pool where cyclic strains are considerably elevated.

atherosclerosis cyclic strain finite-element analysis endothelial-cell proliferation leaky junctions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.J. Reape and P.H. Groot, Chemokines and atherosclerosis. Atherosclerosis 147 (1999) 213–225.Google Scholar
  2. 2.
    Q. Capers, R.W. Alexander, P. Lou, H. De Leon, J.N. Wilcox, N. Ishizaka, A.B. Howardt and W.R. Taylor, Monocyte chemoattractant protein-1 expression in aortic tissues of hypertensive rats. Hypertension 30 (1997) 1397–1402.Google Scholar
  3. 3.
    M.J. Jiang, Y.J. Yu, Y.L. Chen, Y.M. Lee and L.S. Hung, Cyclic strain stimulates monocyte chemotactic protein-1 mRNA expression in smooth muscle cells. J. Cell Biochem. 76 (1999) 303–310.Google Scholar
  4. 4.
    D.L. Wang, B.S. Wung, Y.J. Shyy, C.F. Lin, Y.J. Chao, S. Usami and S. Chien, Mechanical strain induces monocyte chemotactic protein-1 gene expression in endothelial cells. Effects of mechanical strain on monocyte adhesion to endothelial cells. Circ. Res. 77 (1995) 294–302.Google Scholar
  5. 5.
    B.S. Wung, J.J. Cheng, Y.J. Chao, J. Lin, Y.J. Shyy and D.L. Wang, Cyclical strain increases monocyte chemotactic protein-1 secretion in human endothelial cells. Am. J. Physio. 270 (1996) H1462-H1468.Google Scholar
  6. 6.
    G.C. Cheng, W.H. Briggs, D.S. Gerson, P. Libby, A.J. Grodzinsky, M.L. Gray and R.T. Lee, Mechanical strain tightly controls fibroblast growth factor-2 release from cultured human vascular smooth muscle cells. Circ. Res. 80 (1997) 28–36.Google Scholar
  7. 7.
    A.W. Clowes, M.A. Reidy and M.M. Clowes, Mechanisms of stenosis after arterial injury. Lab. Invest. 49 (1983) 208–215.Google Scholar
  8. 8.
    C.L. Jackson and M.A. Reidy, Basic fibroblast growth factor: its role in the control of smooth muscle cell migration. Am. J. Pathol. 143 (1993) 1024–1031.Google Scholar
  9. 9.
    V. Lindner and M.A. Reidy, Expression of basic fibroblast growth factor and its receptor by smooth muscle cells and endothelium in injured rat arteries. An en face study. Circ. Res. 73 (1993) 589–595.Google Scholar
  10. 10.
    I.J. Mason, The ins and outs of fibroblast growth factors. Cell 78 (1994) 547–552.Google Scholar
  11. 11.
    R.T. Lee, C. Yamamoto, Y. Feng, S. Potter-Perigo, W.H. Briggs, K.T. Landschulz, T.G. Turi, J.F. Thompson, P. Libby and T.N. Wight, Mechanical strain induces specific changes in the synthesis and organization of proteoglycans by vascular smooth muscle cells. J. Biol. Chem. 276 (2001) 13847–13851.Google Scholar
  12. 12.
    J.M. Lemire, K.R. Braun, P. Maurel, E.D. Kaplan, S.M. Schwartz and T.N. Wight, Versican/PG-M isoforms in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 19 (1999) 1630–1639.Google Scholar
  13. 13.
    G. Li, I. Mills and B. Sumpio, Cyclic strain stimulates Endothelial cell proliferation: Characterization of strain requirements. Endothelium 2 (1994) 177–181.Google Scholar
  14. 14.
    S. Weinbaum, G. Tzeghai, P. Ganatos, R. Pfeffer and S. Chien, Effect of cell turnover and leaky junctions on arterial macromolecular transport. Am. J. Physiol. 248 (1985) H945-H960.Google Scholar
  15. 15.
    S.J. Lin, K.M. Jan, S. Weinbaum and S. Chien, Transendothelial transport of low density lipoprotein in association with cell mitosis in rat aorta. Arteriosclerosis 9 (1989) 230–236.Google Scholar
  16. 16.
    S. Chien, S.J. Lin, S. Weinbaum, M.M. Lee and K.M. Jan, The role of arterial endothelial cell mitosis in macromolecular permeability. Adv. Exp. Med. Biol. 242 (1988) 59–73.Google Scholar
  17. 17.
    B.I. Tropea, S.P. Schwarzacher, A. Chang, C. Asvar, P. Huie, R.K. Sibley and C.K. Zarins, Reduction of aortic wall motion inhibits hypertension-mediated experimental atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 20 (2000) 2127–2133.Google Scholar
  18. 18.
    D.N. Ku, D.P. Giddens, C.K. Zarins and S. Glagov, Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5 (1985) 293–302.Google Scholar
  19. 19.
    M.R. Kaazempur-Mofrad, A.G. Isasi, Y.F. Younis HF, R.C. Chan, D.P. Hinton, G. Sukhova, G.M. LaMuraglia, R.T. Lee and R.D. Kamm, Diseased Carotid Bifurcation fluid mechanics based on in vivo magnetic resonance images: Relationship of Shear Stress an Inflammation. Annals Biomed. Engng. (2003). Submitted.Google Scholar
  20. 20.
    N. Masawa, S. Glagov and C.K. Zarins, Quantitative morphologic study of intimal thickening at the human carotid bifurcation: I. Axial and circumferential distribution of maximum intimal thickening in asymptomatic, uncomplicated plaques. Atherosclerosis 107 (1994) 137–146.Google Scholar
  21. 21.
    M.H. Friedman, O.J. Deters, C.B. Bargeron, G.M. Hutchins and F.F. Mark, Shear dependent thickening of the human arterial intima. Atherosclerosis 60 (1986) 161–171.Google Scholar
  22. 22.
    A. Delfino, N. Stergiopulos, J.E. Moore Jr. and J. J. Meister, Residual strain effects on the stress field in a thick wall finite-element model of the human carotid bifurcation. J. Biomech. 30 (1997) 777–786.Google Scholar
  23. 23.
    R.S. Salzar, M.J. Thubrikar and R.T. Eppink, Pressure-induced mechanical stress in the carotid artery bifurcation: a possible correlation to atherosclerosis. J. Biomech. 28 (1995) 1333–1340.Google Scholar
  24. 24.
    B.K. Bharadvaj, R.F. Mabon and D.P. Giddens, Steady flow in a model of the human carotid bifurcation. Part I-flow visualization. J. Biomech. 15 (1982) 349–362.Google Scholar
  25. 25.
    A. Delfino, Analysis of Stress Field in a Model of the Human Carotid Bifurcation. Ph.D. Thesis, Department of Physics, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland (1996) 235 pp.Google Scholar
  26. 26.
    K.J. Bathe, Finite Element Procedures. Englewood Cliffs, N.J.: Prentice Hall (1996) 1037 pp.Google Scholar
  27. 27.
    H.F. Younis, M.R. Kaazempur-Mofrad, R.C. Chan, A.H. Chau, D.P. Hinton, A.G. Isasi, L.A. Kim and R.D. Kamm, A numerical study of carotid artery wall and fluid mechanics based on in vivo magnetic resonance images of healthy volunteers. Biomech. Model. Mechanobiology (2003). In press.Google Scholar
  28. 28.
    Y.C. Fung, K. Fronek and P. Patitucci, Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 237 (1979) H620-H631.Google Scholar
  29. 29.
    L. Lilly, Pathophysiology of Heart Disesase. Baltimore: Lippincott Williams & Wilkins (1998) 401 pp.Google Scholar
  30. 30.
    H.M. Loree, A.J. Grodzinsky, S.Y. Park, L.J. Gibson and R.T. Lee, Static circumferential modulus of human atherosclerotic tissue. J. Biomech. 27 (1994) 195–204.Google Scholar
  31. 31.
    I.H.M. Loree, B.J. Tobias, L.J. Gibson, R.D. Kamm, D.M. Small and R.T. Lee, Mechanical Properties of model atherosclerotic lesion lipid pools. Arterioscl. Thromb. 14 (1994) 230–234.Google Scholar
  32. 32.
    R. Huiskes, R. Ruimerman, G.H. van Lenthe and J.D. Janssen, Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405 (2000) 704–706.Google Scholar
  33. 33.
    T. VanMerode, P.J. Brands, A.P. Hoeks and R.S. Reneman, Different effects of aging on elastic and muscular arterial bifurcations in men. J. Vasc. Res. 33 (1996) 47–52.Google Scholar
  34. 34.
    D.C. Schwenke and T.E. Carew, Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis 9 (1989) 908–918.Google Scholar
  35. 35.
    C.J. Chuong and Y.C. Fung, On residual stresses in arteries [published erratum appeared in J. Biomech. Engng. 112 (1990) 249]. J. Biomech. Engng. 108 (1986) 189–192.Google Scholar
  36. 36.
    Y.C. Fung, What are the residual stresses doing in our blood vessels? Ann. Biomed. Engng. 19 (1991) 237–249.Google Scholar
  37. 37.
    J.D. Humphrey, Mechanics of the arterial wall: review and directions. Crit. Rev. Biomed. Engng. 23 (1995) 1–162.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • M.R. Kaazempur-Mofrad
    • 1
  • H.F. Younis
    • 1
  • S. Patel
    • 1
  • A. Isasi
    • 1
  • C. Chung
    • 1
  • R.C. Chan
    • 2
  • D.P. Hinton
    • 2
  • R.T. Lee
    • 3
  • R.D. Kamm
    • 1
  1. 1.Department of Mechanical Engineering and Division of Biological EngineeringMassachusetts Institute of TechnologyCambridgeU.S.A
  2. 2.Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonU.S.A
  3. 3.Cardiovascular DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonU.S.A

Personalised recommendations