Environmental Monitoring and Assessment

, Volume 90, Issue 1–3, pp 73–88 | Cite as

Gold Concentrations in Abiotic Materials, Plants, and Animals: A Synoptic Review

  • R. Eisler


Gold (Au) is ubiquitous in the environment and mined commercially at numerous locations worldwide. It is also an allergen that induces dermatitis in sensitive individuals. Gold concentrations were comparatively elevated in samples collected near gold mining and processing facilities, although no data were found for birds and non-human mammals. Maximum gold concentrations reported in abiotic materials were 0.001 μg L-1 in rainwater; 0.0015 μgL-1in seawater near hydrothermal vents vs. <0.00004–0.0007 μg L-1 elsewhere; 5.0 μg kg-1 dry weight (DW) in the Earth's crust; 19.0 μg L-1 in a freshwater stream near a gold mining site; 440 μg kg-1 DW in atmospheric dust near a high traffic road; 843 μg kg-1 DW in alluvial soil near a Nevada gold mine vs. <29 μg kg-1 DW premining; 2.53 mg kg-1 DW in snow near a Russian smelter vs. <0.35 mg kg-1 DW at a reference site; 4.5 mg kg-1 DW in sewage sludge; 28.7 mg kg-1 DW in polymetallic sulfides from the ocean floor; and 256.0 mg kg-1 DW in freshwatersediments near a gold mine tailings pile vs. <5 μg kg-1 DW prior to mining. In plants, elevated concentrations of 19 μg Au kg-1 DW were reported in terrestrial vegetation near gold mining operations vs. <4 μg kg-1 DW at a reference site; 37 μg kg-1 DW in aquatic bryophytes downstream from a gold mine; 150 μg Au kg-1 DW in leaves of beans grown in soil containing 170 μg kg-1 DW; up to 1.06 mg kg-1 DW in algal mats of rivers receiving gold mine wastes; and 0.1–100 mg kg-1 DW in selected gold accumulator plants. Fish and aquatic invertebrates contained 0.1–38.0 μg Au kg-1 DW. In humans, gold concentrations up to 1.1 μg L-1 were documented in urine ofdental technicians vs. 0.002–0.85 μg L-1 in reference populations; 2.1 μg L-1 in breast milk, attributed to gold dental fillings and jewelry of mothers; 1.4 mg kg-1 DW in hairof goldsmiths vs. a normal range of 6–880 μg kg-1 DW; 2.39 mg L-1 in whole blood of rheumatoid arthritis patients receiving gold thiol drugs to reduce inflammation (chrysotherapy) vs. a normal range of 0.2–2.0 μg L-1; and 60.0 to 233.0 mg kg-1 fresh weight (FW) in kidneys of rheumatoid arthritis patients undergoing active chrysotherapy vs. <42.0 mg kg-1 FW kidney 140 months posttreatment.

air gold humans invertebrates plants sediments sewage sludge snow soils vertebrates water 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahnlide, I., Bjorkner, B., Bruze, M. and Moller, H.: 2000, 'Exposure to metallic gold in patients with contact allergy to gold sodium thiosulfate', Cont. Dermat. 43, 344–350.Google Scholar
  2. Awadallah, R. M., Mohamed, A. E., Abou-El-Wafa, M. H. and Rashed, M. N.: 1995, 'Assessment of trace element concentrations in fenugreek and lupin planted in the experimental farm, High Dam Lake Development Authority, Gerf Hussein beach locality, Egypt', Pakistan J. Sci. Indus. Res. 38, 51–60.Google Scholar
  3. Bagatto, G. and Shorthouse, J. D.: 1994, 'Mineral concentrations within cells of galls induced by Hemadas nubilpennis (Hymenoptera: Pteromalidae) on lowbush blueberry: Evidence from cryoanalytical scanning electron microscopy', Canad. J. Bot. 72, 1387–1390.Google Scholar
  4. Barbante, C., Cozzi, G., Capodaglio, G., Van de Velde, K., Ferrari, C., Boutron, C. and Cescon, P.: 1999, 'Trace element determination in alpine snow and ice by double focusing inductively coupled plasma mass spectrometry with microconcentric nebulization', J. Anal. Atom. Spectr. 14, 1433–1438.Google Scholar
  5. Begerow, J., Sensen, U., Wiesmuller, G. A. and Dunemann, L.: 1999, 'Internal platinum, palladium, and gold exposure in environmentally and occupationally exposed persons', Zbl. Hyg. Umweltmed. 202, 411–424.Google Scholar
  6. Caroli, S., Senofonte, O., Violante, N., D'Ilio, S., Caimi, S., Chiodo, F. and Menditto, A.: 1998, 'Diagnostic potential of hair analysis as applied to the goldsmith sector', Microchem. J. 59, 32–44.Google Scholar
  7. Davies, B. E.: 1997, 'Deficiencies and toxicities of trace elements and micronutrients in tropical soils: Limitations of knowledge and future research needs', Environ. Toxicol. Chem. 16, 75–83.Google Scholar
  8. Dissanayake, A. B. and Kritsotakis, K.: 1984, 'The geochemistry of Au and Pt in peat and algal mats-A case study from Sri Lanka', Chem. Geol. 42, 61–76.Google Scholar
  9. Ehrlich, A. and Belsito, D. V.: 2000, 'Allergic contact dermatitis to gold', Cutis 65, 323–326.Google Scholar
  10. Eisler, R.: 1981, Trace Metal Concentrations in Marine Organisms, Pergamon Press, New York, 687 pp.Google Scholar
  11. Eisler, R.: 2003, 'Health risks of gold miners: A synoptic review', Environ. Geochem. Health. 25(3), 325–345.Google Scholar
  12. Eisler, R., Clark Jr., D. R., Wiemeyer, S. N. and Henny, C. J: 1999, 'Sodium Cyanide Hazards to Fish and Other Wildlife from Gold Mining Operations', in J. M. Azcue (ed.), Environmental Impacts of Mining Activities: Emphasis on Mitigation and Remedial Measures, Springer-Verlag, Berlin, pp.55–67.Google Scholar
  13. Elevatorski, E. A.: 1981, Gold Mines of the World, Minobras, P.O. Box 262, Dana Point, California, 107 pp.Google Scholar
  14. Fowler Jr., J. F.: 2001, 'Gold', Amer. J. Cont. Dermat. 12, 1–2.Google Scholar
  15. Gordeyev, V. V., Yegorov, A. S., Lisitsyn, A. P., Letokhov, V. S., Pakhomov, D. Y. and Gulevich, V. M.: 1997, 'Dissolved gold in surface waters of the northeastern Atlantic', Geochem. Int. 35, 1007–1015.Google Scholar
  16. Gordeyev, V. V., Yegorov, A. S., Radayev, V. N. and Zubow, I. V.: 1991, 'Gold as a possible tracer of hydrothermal influence on bottom waters', Oceanology 31, 178–182.Google Scholar
  17. Greer, J.: 1993, 'The price of gold: Environmental costs of the new gold rush', The Ecologist 23, 91–96.Google Scholar
  18. Gregurek, D., Melcher, F., Niskavaara, H., Pavlov, V. A., Reimann, C. and Stumpfl, E. F.: 1999, 'Platinum-group elements (Rh, Pt, Pd) and Au distribution in snow samples from the Kola Peninsula, NW Russia', Atmospher. Environ. 33, 3281–3290.Google Scholar
  19. Hannington, M., Herzig, P., Scott, S., Thompson, G. and Rona, P.: 1991, 'Comparative mineralogy and geochemistry of gold-bearing sulfide deposits on the mid-ocean ridges', Mar. Geol. 101, 217–248.Google Scholar
  20. Herzig, P. M., Hannington, M. D., Fouquet, Y., Stackelberg, U. V. and Petersen, S.: 1993, 'Gold-rich polymetallic sulfides from the Lau Back Arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the southwest Pacific', Econ. Geol. 88, 2182–2209.Google Scholar
  21. Hirohata, S.: 1996, 'Inhibition of human B cell activation by gold compounds', Clin. Immunol. Immunopathol. 81, 175–181.Google Scholar
  22. Karamushka, V. I. and Gadd, G. M.: 1999, 'Interaction of Saccharomyces cerevisiae with gold: Toxicity and accumulation', Biometals 12, 289–294.Google Scholar
  23. Kirkemo, H., Newman, W. L. and Ashley, R. P.: 2001, Gold, U.S. Geol. Surv., Box 25286, Federal Center, Denver, Colorado 80225, 23 pp.Google Scholar
  24. Kist, A. N.: 1994, 'Investigation of element speciation in atmosphere', Biol. Trace Elem. Res. 43-54, 259–266.Google Scholar
  25. Krachler, M., Prohaska, T., Koellensperger, G., Rossipal, E. and Stingeder, G.: 2000, 'Concentrations of selected trace elements in human milk and in infant formulas determined by magnetic sector field inductively coupled plasma-mass spectrometry', Biol. Trace Elem. Res. 76, 97–112.Google Scholar
  26. Lee, E. E. and Maibach, H. L.: 2001, 'Is contact allergy in man lifelong? An overview of patch test follow-ups', Cont. Dermat. 44, 137–139.Google Scholar
  27. Leybourne, M. I., Goodfellow, W. D., Boyle, D. R. and Hall, G. E. M.: 2000, 'Form and distribution of gold mobilized into surface waters and sediments from a gossan tailings pile, Murray Brook massive sulphide deposit, New Brunswick, Canada', Appl. Geochem. 15, 629–646.Google Scholar
  28. Lottermoser, B. G.: 1995, 'Noble metals in municipal sewage sludges of southeastern Australia', Ambio 24, 354–357.Google Scholar
  29. McBride, M. B., Richards, B. K., Steenhuis, T., Russo, J. J. and Sauve, S.: 1997, 'Mobility and solubility of toxic metals and nutrients in soil fifteen years after sludge application', Soil Sci. 162, 487–500.Google Scholar
  30. Merchant, B.: 1998, 'Gold, the noble metal and the paradoxes of its toxicology', Biologicals 26, 49–59.Google Scholar
  31. Messerschmidt, J., von Bohlen, A., Alt, F. and R. Klockenkamper, R.: 2000, 'Separation and enrichment of palladium and gold in biological and environmental samples, adapted to the determination by total reflection X-ray fluorescence', Analyst 125, 397–399.Google Scholar
  32. Miller, J. R., Rowland, J., Lechler, P. J., Desilets, M. and Hsu, L. C.: 1996, 'Dispersal of mercury-contaminated sediments by geomorphic processes, Sixmile Canyon, Nevada, U.S.A.: Implications to site characterization and remediation of fluvial environments', Water, Air, Soil Pollut. 86, 373–388.Google Scholar
  33. Mohamed, A.: 1999, 'Environmental variations of trace element concentrations in Egyptian cane sugar and soil samples (Edfu factories)', Food Chem. 65, 503–507.Google Scholar
  34. Moss, R., Scott, S. and Binns, R. A.: 1997, 'Concentrations of gold and other ore metals in volcanics hosting the Pacmanus seafloor sulfide deposit', JAMSTEC J. Deep Sea Res. 13, 257–267.Google Scholar
  35. Ohta, K., Isiyama, T., Yokoyama, M. and Mizuno, T.: 1995, 'Determination of gold in biological materials by electrothermal atomic absorption spectrometry with a molybdenum tube atomizer', Talanta 42, 263–267.Google Scholar
  36. Oluwole, A. F., Ojo, J. O., Durosinmi, M. A., Asubiojo, O. I., Akanle, O. A., Spyrou, N. M. and Filby, R. H.: 1994, 'Elemental composition of head hair and fingernails of some Nigerian subjects', Biol. Trace Elem. Res. 43-45, 443–452.Google Scholar
  37. Prohaska, T., Kollensperger, G., Krachler, M., De Winne, K., Stingeder, G. and Moens, L.: 2000, 'Determination of trace elements in human milk by inductively coupled plasma sector field mass spectrometry (ICP-SFMS)', J. Anal. Atomic Spectr. 15, 335–340.Google Scholar
  38. Puddephatt, R. J.: 1978, The Chemistry of Gold, Elsevier, Amsterdam, 274 pp.Google Scholar
  39. Pyatt, F. B.: 1999, 'Comparison of foliar and stem bioaccumulation of heavy metals by Corsican pines in the Mount Olympus area of Cyprus', Ecotoxicol. Environ. Safe. 42, 57–161.Google Scholar
  40. Rashed, M. N. and Awadallah, R. M.: 1998, 'Trace elements in faba bean (Vicia faba L) plant and soil as determined by atomic absorption spectroscopy and ion selective electrodes', J. Sci. Food Agric. 77, 18–24.Google Scholar
  41. Sabti, H., Hossain, M. M., Brooks, R. R. and Stewart, R. B.: 2000, 'The current environmental impact of base-metal mining at the Tui Mine, Te Aroha, New Zealand', J. Roy. Soc. N.Z. 30, 197–208.Google Scholar
  42. Sadler, P. J.: 1976, 'The biological chemistry of gold: A metallo-drug and heavy-atom label with variable valency', Struct. Bonding 29, 171–215.Google Scholar
  43. Samecka-Cymerman, A. and Kempers, A. J.: 1998, 'Bioindication of gold by aquatic bryophytes', Acta Hydrochim. Hydrobiol. 26, 90–94.Google Scholar
  44. Shakeshaft, J., Clarke, A. K., Evans, M. J. and S. C. Lillicrap, S. C.: 1993, 'X-ray Fluorescence Determination of Gold In Vivo', in J. D. Eastman and K. J. Ellis, (eds), Human Body Composition, Plenum Press, New York, pp. 307–310.Google Scholar
  45. Suarez, I., Ginarte,M., Fernandez-Redondo, V. and Toribo, J.: 2000, 'Occupational contact dermatitis due to gold', Cont. Dermat. 43, 367–368.Google Scholar
  46. Terashima, S., Katayama, H. and Itoh, S.: 1991, 'Geochemical behavior of gold in coastal marine sediments from the southeastern margin of Japan Sea', Mar. Mining 10, 247–257.Google Scholar
  47. Terashima, S., Nakao, S., Mita, N., Inouchi, Y. and Nishimura, A.: 1995, 'Geochemical behavior of Au in terrigenous and pelagic marine sediments', Appl. Geochem. 10, 35–44.Google Scholar
  48. Tsurita, K., Matsunaga, K., Suzuki, K., Suzuki, R., Akita, H., Washimi, Y., Tomitaka, A. and Ueda, H.: 2001, 'Female predominance of gold allergy', Cont. Dermat. 44, 55–56.Google Scholar
  49. Vamnes, J. S., Morken, T., Helland, S. and Gjerdet, N. R.: 2000, 'Dental gold alloys and contact hypersensitivity', Cont. Dermat. 42, 128–133.Google Scholar
  50. Van de Velde, K., Barbante, C., Cozzi, G., Moret, I., Bellomi, T., Ferrari, C. and C. Boutron, C.: 2000, 'Changes in the occurrence of silver, gold, platinum, palladium and rhodium in Mont Blanc ice and snow since the 18th century', Atmosph. Environ. 34, 3117–3127.Google Scholar
  51. Weber, V. A., Lehrberger, G. and Morteani, G.: 1997, 'Gold und Arsen in Pilzen,Moosen und Baumnadeln-Biogeochemische Aspekte einer 'geogenen Atlast' im Moldanubikum des Oberpfalzer Waldes bei Oberviechtach', Geol. Bavarica 102, 229–250.Google Scholar
  52. Zhuk, L. I., Mikholskaya, I. N., Danilova, E. A. and Kist, A. E.: 1994, 'Mapping using human blood composition data', Biol. Trace Elem. Res. 43-45, 371–381.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • R. Eisler
    • 1
  1. 1.U.S. Geological Survey, Patuxent Wildlife Research CenterLaurelU.S.A

Personalised recommendations