Journal of Elasticity

, Volume 74, Issue 1, pp 67–86 | Cite as

The Nonlinear Theory of Elastic Shells with Phase Transitions

  • Victor A. Eremeyev
  • Wojciech Pietraszkiewicz


We develop the general nonlinear theory of elastic shells with an account of phase transitions in the shell material. Our formulation is based on the dynamically and kinematically exact through-the-thickness reduction of three-dimensional description of the phenomenon to the two-dimensional form written on the shell base surface. In this model shell displacements are expressed by work-averaged translations and rotations of the shell cross-sections. All shell relations are then found from the variational principle of the stationary total potential energy. In particular, we derive the new global dynamic continuity condition at the singular surface curve modelling the phase interface. We also discuss particular forms of the local dynamic continuity conditions at coherent and incoherent interface curves. The results are illustrated by an example of a phase transition in an infinite plate with a circular hole.

shell phase transition singular curve rotation nonlinear elasticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.W. Gibbs, On the equilibrium of heterogeneous substances. Trans. Connecticut Acad. Sci. 3(1875/1878) 108–248, (1875) 343-524. Reprinted in: The Collected Works of J. Willard Gibs.Longmans/Green, New York (1928) pp. 55-353.Google Scholar
  2. 2.
    M. Grinfeld, Thermodynamics Methods in the Theory of Heterogeneous Systems. Longman, Harlow (1991).Google Scholar
  3. 3.
    A. Romano, Thermodynamics of Phase Transitions in Classical Field Theory.World Scientific, Singapore (1993).Google Scholar
  4. 4.
    M.E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane. Clarendon Press, Oxford (1993).Google Scholar
  5. 5.
    G.A. Maugin, Material Inhomogeneities in Elasticity. Chapman and Hall, London (1993).Google Scholar
  6. 6.
    M.E. Gurtin, Configurational Forces as Basic Concepts of Continuum Physics. Springer, Berlin (2000).Google Scholar
  7. 7.
    K. Bhattacharya and R.D. James, A theory of thin films of martensitic materials with applications to microactuators. J. Mech. Phys. Solids 36(1999) 531–576.Google Scholar
  8. 8.
    R.D. James and R. Rizzoni, Pressurized shape memory thin films. J. Elasticity 59(2000) 399–436.Google Scholar
  9. 9.
    J.G. Simmonds, The nonlinear thermodynamical theory of shells: descent from 3-dimensions without thickness expansion. In: E.L. Axelrad and F.A. Emmerling (eds), Flexible Shells, Theory and Applications. Springer, Berlin (1984) pp. 1–11.Google Scholar
  10. 10.
    A. Libai and J.G. Simmonds, The Nonlinear Theory of Elastic Shells, 2nd ed. Cambridge Univ. Press, Cambridge (1998).Google Scholar
  11. 11.
    S.S. Antman, Nonlinear Problems of Elasticity. Springer, New York (1995).Google Scholar
  12. 12.
    A. Libai and J.G. Simmonds, Nonlinear elastic shell theory. Adv. Appl. Mech. 23(1983) 271–371.Google Scholar
  13. 13.
    J. Makowski and H. Stumpf, Buckling equations for elastic shells with rotational degrees of freedom undergoing finite strain deformation. Internat. J. Solids Struct. 26(1990) 353–368.Google Scholar
  14. 14.
    W. Pietraszkiewicz, Teorie nieliniowe powlok. In: Cz. Wozniak (ed.), Mechanika Sprezystych Plyt i Powlok. Wyd. Nauk. PWN, Warszawa (2001) pp. 424–497.Google Scholar
  15. 15.
    J. Chró´scielewski, J. Makowski and W. Pietraszkiewicz, Statyka i Dynamika Powlok Wieloplatowych: Nieliniowa Teoria i Metoda Elementów Sko´nczonych. Wydawnictwo IPPT PAN, Warszawa (2004).Google Scholar
  16. 16.
    E. Cosserat and F. Cosserat, Théorie des Corps Deformables. Herman et Flis, Paris (1909); English translation: NASA TT F-11, 561. NASA, Washington, DC (1968).Google Scholar
  17. 17.
    H. Altenbach and P.A. Zhilin, The theory of elastic thin shells (in Russian).Adv. in Mech. 11(1988) 107–148.Google Scholar
  18. 18.
    L.M. Zubov, Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, New York (1997).Google Scholar
  19. 19.
    L.M. Zubov, Semi-inverse solutions in nonlinear theory of elastic shells. Arch. Mech. 53(2001) 599–610.Google Scholar
  20. 20.
    L.M. Zubov, General solutions to the nonlinear static problem for elastic shells. Doklady Phys. 47(2002) 74–77.Google Scholar
  21. 21.
    V.A. Eremeyev and L.M. Zubov, General nonlinear theory of elastic micropolar shells (in Russian). Izv. Vuzov Severo-Kavk. Region, Ser. Est. Nauki, Spetsvypusk (2003) 124-169.Google Scholar
  22. 22.
    J. Chróscielewski, Rodzina elementów skonczonych klasy C 0 w nieliniowej szescioparametrowej teorii powlok. Zesz. Nauk. Politechniki GdanskiejNr. 540, Bud. L¸ad. LIII(1996) 1–291.Google Scholar
  23. 23.
    J. Chróscielewski, J. Makowski and H. Stumpf, Finite element analysis of smooth, folded and multi-shell structures. Comput. Methods Appl. Mech. Engrg. 141(1997) 1–46.Google Scholar
  24. 24.
    J. Chróscielewski, J. Makowski and W. Pietraszkiewicz, Nonlinear dynamics of flexible shell structures. Comput. Assisted Mech. Engrg. Sci. 9(2002) 341–357.Google Scholar
  25. 25.
    I. Lubowiecka and J. Chróscielewski, On dynamics of flexible branched shell structures undergoing large overall motion using finite elements. Computers Structures 80(2002) 891–898.Google Scholar
  26. 26.
    C. Truesdell and W. Noll, The nonlinear field theories of mechanics. In: S. Flügge (ed.), Handbuch der Physik, Vol. III/3. Springer, Berlin (1965) pp. 1–602.Google Scholar
  27. 27.
    J. Makowski and W. Pietraszkiewicz, Thermomechanics of Shells with Singular Curves.Zeszyty Naukowe IMP PAN Nr 528(1487), Gdánsk (2002) pp. 1-100.Google Scholar
  28. 28.
    M.E. Gurtin and A.I.Murdoch, A continuum theory of elastic material surfaces. Arch. Rational Mech. Anal. 57(1975) 291–323.Google Scholar
  29. 29.
    A.I. Murdoch, A coordinate free approach to surface kinematics. Glasgow Math. J. 32(1990) 299–307.Google Scholar
  30. 30.
    J. Makowski, W. Pietraszkiewicz and H. Stumpf, Jump conditions in the nonlinear theory of thin irregular shells. J. Elasticity 54(1999) 1–26.Google Scholar
  31. 31.
    J.L. Ericksen and C. Truesdell, Exact theory of stress and strain in rods and shells. Arch. Rational Mech. Anal. 1(1957) 295–323.Google Scholar
  32. 32.
    P.M. Naghdi, The theory of plates and shells. In: S. Flügge (ed.), Handbuch der Physik, Vol. VIa/2. Springer, Berlin (1972) pp. 425–640.Google Scholar
  33. 33.
    M.B. Rubin, Cosserat Theories: Shells, Rods and Points. Kluwer Academic Publishers, Dordrecht (2000).Google Scholar
  34. 34.
    Ch.M. Mushtari and K.Z. Galimov, Nonlinear Theory of Thin Elastic Shells(in Russian). Tatknigoizdat, Kazan' (1957); English translation: The Israel Program for Sci. Transl. (1961).Google Scholar
  35. 35.
    W.T. Koiter, On the nonlinear theory of thin elastic shells. Proc. Koninkl. Ned. Acad. Wetensch. B 69(1966) 1–54.Google Scholar
  36. 36.
    W. Pietraszkiewicz, Geometrically nonlinear theories of thin elastic shells. Adv. in Mech. 12(1989) 51–130.Google Scholar
  37. 37.
    W. Pietraszkiewicz, On using rotations as primary variables in the nonlinear theory of thin irregular shells. In: D. Durban et al. (eds), Advances in the Mechanics of Plates and Shells.Kluwer Academic Publishers, Dordrecht (2001) pp. 245–258.Google Scholar
  38. 38.
    W. Pietraszkiewicz, Finite Rotations and Lagrangean Description in the Non-Linear Theory of Shells. Polish Sci. Publ., Warszawa/Poznan (1979).Google Scholar
  39. 39.
    M. Kleiber and Cz. Wozniak, Nonlinear Mechanics of Structures. Kluwer Academic Publishers, Dordrecht (1991).Google Scholar
  40. 40.
    A.J.M. Spencer, Theory of invariants. In: A.C. Eringen (ed.), Continuum Physics, Vol. 1. Academic Press, New York (1971) pp. 239–353.Google Scholar
  41. 41.
    J. Badur, Nieliniowa analiza powlok sprezystych wedlug teorii drugiego przybli?zenia do energii odksztalcenia. Rozprawa doktorska, Instytut Maszyn Przeplywowych PAN, Gdansk (1984).Google Scholar
  42. 42.
    M.E. Gurtin and M.E. Jabbour, Interface evolution in three dimensions with curvaturedependent energy and surface diffusion: Interface-controlled evolution, phase transitions, epitaxial growth of elastic films. Arch. Rational Mech. Anal. 163(2002) 171–208.Google Scholar
  43. 43.
    R. Abeyaratne and J.K. Knowles, A note on the driving traction acting on a propagating interface: Adiabatic and non-adiabatic processes of a continuum. Trans. ASME J. Appl. Mech. 67(2000) 829–831.Google Scholar
  44. 44.
    C. Truesdell, Rational Thermodynamics. Springer, New York (1984).Google Scholar
  45. 45.
    C. Truesdell, A First Course in Rational Continuum Mechanics. Academic Press, New York (1977).Google Scholar
  46. 46.
    V.A. Eremeyev and L.M. Zubov, The conditions of phase equilibrium in nonlinear media with microstructure (in Russian). Proc. Russian Acad. Sci. 326(1992) 968–971.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Victor A. Eremeyev
    • 1
  • Wojciech Pietraszkiewicz
    • 2
  1. 1.Rostov State UniversityRostov on DonRussia
  2. 2.Institute of Fluid-Flow Machinery of the Polish Academy of SciencesGdańskPoland

Personalised recommendations