European Journal of Plant Pathology

, Volume 110, Issue 5–6, pp 573–585 | Cite as

Molecular and Morphological Diversity of Fusarium Species in Finland and North-Western Russia

  • T. Yli-Mattila
  • S. Paavanen-Huhtala
  • P. Parikka
  • P. Konstantinova
  • T.Y. Gagkaeva


In 2001 the range of the total Fusarium contamination percentage of infected seeds was between 0% and 44%, while in 2002 the contamination level was 2–25% in naturally infected Finnish samples and 5–14.5% in six samples from northwestern Russia. The most common Fusarium species in barley were F. avenaceum, F. arthrosporioides, F. sporotrichioides and F. culmorum, while in spring wheat the most common Fusarium species were F. avenaceum, F. arthrosporioides, F. culmorum, F. sporotrichioides and F. graminearum. In most cases, molecular identification with species-specific primers corresponded to the morphological analyses and allowed the identification of degenerated and otherwise morphologically difficult cultures. It was even possible to separate most of the F. arthrosporioides isolates from Finland from the closely-related F. avenaceum isolates. In the phylogenetic analysis of combined β-tubulin, IGS and ITS sequences most European F. arthrosporioides formed a separate clade from most isolates of F. avenaceum and from all isolates of F. tricinctum. Most of the species-specific primers also amplified DNA extracted from grain samples. It was, for instance, possible to detect F. avenaceum in all barley samples with contamination levels higher than 1% and in all spring wheat samples with contamination levels higher than 3%. The detection level for F. graminearum was at a contamination level of 3–5% and that for F. culmorum at a contamination level of 1–5%. In addition, the first Finnish F. langsethiae isolate was found by means of species-specific primers.

Fusarium arthrosporioides F. avenaceum F. tricinctum Gibberella identification phylogeny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bakan B, Giraud-Delville C, Pinson L, Morlar-Richard D, Fournier E and Brygoo Y (2002) Identification by PCR of Fusarium culmorum strains producing large and small amounts of deoxynivalenol. Applied and Environmental Microbiology 68: 5472-5479PubMedGoogle Scholar
  2. Booth C and Spooner BM (1984) Gibberella avenacea, teleo-morph of Fusarium avenaceum from stems of Pteridium aquilinum. Transactions of British Mycological Society 82: 178-180Google Scholar
  3. Cullen DW, Lees AK, Toth IK and Duncan JM (2001) Conventional PCR and real-time quantitative PCR detection of Helminthosporium solani in soil and on potato tubers. European Journal of Plant Pathology 107: 387-398CrossRefGoogle Scholar
  4. Dan H, Ali-Khan ST and Robb J (2001) Use of quantitative PCR diagnostics to identify tolerance and resistance to Verticillium dahliae in potato. Plant Disease 85: 700-705Google Scholar
  5. Doohan FM, Parry DW, Jenkinson P and Nicholson P (1998) The use of species-specific PCR-based assays to analyse Fusarium ear blight of wheat. Plant Pathology 47: 197-205CrossRefGoogle Scholar
  6. Eskola M, Parikka P and Rizzo A (2001) Trichothecenes, ochratoxin A and zearalenone contamination and Fusarium infection in Finnish cereal samples in 1998. Food Additives and Contaminants 18: 707-718CrossRefPubMedGoogle Scholar
  7. Gerlach TR and Nirenberg H (1982) The genus Fusarium-a pictorial atlas. Kommissionsverlag Paul Parey, Berlin, GermanyGoogle Scholar
  8. El-Gholl NE, McRitchie CL, Schoulties CL and Riddings WH (1978) The identification, induction of perithecia, and path-ogenicity of Gibberella (Fusarium) tricincta n sp. Canadian Journal of Botany 56: 2203-2206Google Scholar
  9. Gladstein D and Wheeler W (2001) POY (Phylogeny Reconstruction via Direct Optimization of DNA data), Version 2.7. Department of Invertebrates, American Museum of Natural History, Central Park West, 79th St. New York, NY 10024-5192, USAGoogle Scholar
  10. Hsiao C, Chatterton NJ, Asay KH and Jensen KB (1995) Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome 38: 211-223PubMedGoogle Scholar
  11. Konstantinova P, Karadzhova J, Yli-Mattila T and van den Bulk R (2002) Molecular detection of Alternaria alternata and Fusarium spp. In barley seeds and comparison with routine testing assays. Petria 12: 239-247Google Scholar
  12. Konstantinova P and Yli-Mattila T (in press) IGS-RFLP analysis and development of molecular markers for identification of F. poae; F. pulverosum; F. sporotrichioides and F. kyushuense. International Journal of Food MicrobiologyGoogle Scholar
  13. Langseth W, Bernhoft A, Rundberget T, Kosiak B and Gareis M (1999) Mycotoxin production and cytotoxicity of Fusarium strains isolated from Norwegian cereals. Mycopathologia 144: 103-113Google Scholar
  14. Mishra PK, Fox RTV and Culham A (2003) Development of a PCR-based assay for rapid and reliable identification of pathogenic Fusaria. FEMS Microbiology Letters 218: 329-332CrossRefPubMedGoogle Scholar
  15. Nicholson P, Simpson DR, Weston G, Rezanoor HN, Lees AK, Parry DW and Joyce D (1998) Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiological and Molecular Plant Pathology 53: 17-37CrossRefGoogle Scholar
  16. Paavanen-Huhtala S (2000) Molecular-based assays for the determination of diversity and identification of Fusarium and Gliocladium fungi. Ph.D. Thesis, Annales Universitatis Turkuensis AII 139, University of Turku, (pp. 198) Painosalama OY, Turku, FinlandGoogle Scholar
  17. Paavanen-Huhtala S, Hyvönen J, Bulat SA and Yli-Mattila T (1999) RAPD-PCR, isozyme, rDNA RFLP and rDNA sequence analyses in identification of Finnish Fusarium oxysporum isolates. Mycological Research 103: 625–634; Additives and Contaminants 12: 373-376CrossRefGoogle Scholar
  18. Parry DW and Nicholson P (1996) Development of a PCR assay to detect Fusarium poae in wheat. Plant Pathology 45: 383-391CrossRefGoogle Scholar
  19. Sambrook J, Fritch EF and Maniatis T (1989) Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbour Laboratory Press, New York, USAGoogle Scholar
  20. Schnerr H, Niessen L and Vogel RF (2001) Real time detection of the tri5 gene in Fusarium species by LightCycler™-PCR using SYBR® Green I for continuous fluorescence monitoring. International Journal of Food Microbiology 71: 53-61CrossRefPubMedGoogle Scholar
  21. Taylor EJA, Stevens EA, Bates JA, Morreale D, Lee D, Kenyon DM and Thomas JE (2001) Rapid-cycle PCR detection of Pyrenophora graminea from barley seed. Plant Pathology 50: 347-355CrossRefGoogle Scholar
  22. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS and Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31: 21-32CrossRefPubMedGoogle Scholar
  23. Torp M, Langseth W, Yli-Mattila T, Klemsdal SS, Mach RL and Nirenberg HI (2000) Section Sporotrichiella-identification of a new Fusarium species, or a polyphasic approach to its taxonomy. 6th European Seminar & Third COST 835 Workshop of Agriculturally Important Toxigenic Fungi (abstract), 11-16 September, 2000 (p. 19) Parey Buchverlag Berlin, Berlin, GermanyGoogle Scholar
  24. Torp M and Nirenberg HI (in press) Fusarium langsethiae sp. nov. on cereals in Europe. International Journal of Food MicrobiologyGoogle Scholar
  25. Turner AS, Lees AK, Rezanoor HN and Nicholson P (1998) Refinement of PCR-detection of Fusarium avenaceum and evidence from DNA marker studies for phenetic relatedness to Fusarium tricinctum. Plant Pathology 47: 278-288Google Scholar
  26. Waalwijk C, Kastelein P, de Vries I, Kerenyi Z, van der Lee T, Hesselink T, Köhl J and Kema G (2003) Major changes in Fusarium spp. in wheat in the Netherlands. European Journal of Plant Pathology 109: 743-754CrossRefGoogle Scholar
  27. Wheeler, WC (1996) Optimization alignment. The end of multiple sequence alignment in phylogenetics? Cladistics 12: 1-9CrossRefGoogle Scholar
  28. White TJ, Bruns T, Lee S and Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ and White TJ et al., (eds) PCR Protocols: A Guide to Methods and Applications (pp. 315–322) Academic Press, San Diego, USAGoogle Scholar
  29. Yli-Mattila T, Mach R, Alekhina IA, Bulat SA, Koskinen S, Kullnig-Gradinger CM, Kubicek C and Klemsdal SS (in press) Phylogenetic relationship of Fusarium langsethiae to Fusarium poae and F. sporotrichioides as inferred by IGS, ITS, ?-tubulin sequence and UP-PCR hybridization analysis. International Journal of Food MicrobiologyGoogle Scholar
  30. Yli-Mattila T, Mironenko NV, Alekhina IA, Hannukkala A and Bulat SA (1997) Universally primed polymerase chain reaction analysis of Fusarium avenaceum isolated from wheat and barley in Finland. Agricultural and Food Science in Finland 6: 25-36Google Scholar
  31. Yli-Mattila T, Paavanen S, Hannukkala A, Parikka P, Tahvonen R and Karjalainen R (1996) Isozyme and RAPD-PCR analyses of Fusarium strains from Finland. Plant Pathology 45: 126-134CrossRefGoogle Scholar
  32. Yli-Mattila T, Paavanen-Huhtala S, Bulat SA, Alekhina IA and Nirenberg HI (2000) Molecular and phylogenetic analysis of the Fusarium avenaceum/F. arthrosporioides/F. tricinctum species complex. In: Nirenberg HI (ed.) 6th European Fusarium Seminar and Third COST 835 Workshop (Agriculturally Important Toxigenic fungi) (p. 20) Parey Buchverlag, Berlin, GermanyGoogle Scholar
  33. Yli-Mattila T, Paavanen-Huhtala S, Bulat SA, Alekhina IA and Nirenberg HI (2002a) Molecular, morphological and phylo-genetic analysis of Fusarium avenaceum/F. arthrosporioides/F. tricinctum species complex-a polyphasic approach. Mycological Research 106: 655-669CrossRefGoogle Scholar
  34. Yli-Mattila T, Paavanen-Huhtala S, Parikka P, Konstantinova P, Gagkaeva T, Eskola M, Jestoi M and Rizzo A (2002b) Occurrence of Fusarium fungi and their toxins in Finnish cereals in 1998 and 2000. Journal of Applied Genetics 43A: 207-214Google Scholar
  35. Ylimäki A (1981) The mycoflora of cereal seeds and some feedstuffs. Annales Agriculturae Fenniae 20: 74-88Google Scholar
  36. Ylimäki A, Koponen H, Hintikka E-L, Nummi M, Niku-Paavola M-L, Ilus T, Enari TM (1979) Mycoflora and occurrence of Fusarium toxins in Finnish grain-Technical Research Centre of Finland, Materials and Processing Technology publication 21 (pp. 28) Valtion Painatuskeskus, Helsinki, FinlandGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • T. Yli-Mattila
    • 1
  • S. Paavanen-Huhtala
    • 1
  • P. Parikka
    • 2
  • P. Konstantinova
    • 1
  • T.Y. Gagkaeva
    • 3
  1. 1.Department of Biology, Laboratory of Plant Physíology and Molecular BiologyUniversity of TurkuTurkuFinland; Fax:
  2. 2.Plant Production Research/Plant ProtectionMTT Agrifood Research FinlandJokioinenFinland
  3. 3.Laboratory of Mycology and PhytopathologyAll-Russian Institute of Plant ProtectionSt.-PetersburgRussia

Personalised recommendations