European Journal of Plant Pathology

, Volume 110, Issue 3, pp 317–331 | Cite as

Identification and Characterisation of Bacteria Causing Soft-rot in Agave tequilana

  • I. Jiménez-Hidalgo
  • G. Virgen-Calleros
  • O. Martínez-de la Vega
  • G. Vandemark
  • V. Olalde-PortugalEmail author


Agave tequilana is the raw material for the production of the alcoholic beverage tequila. A bacterial disease has affected the A. tequilana crop in recent years. Previous reports based on colony and cell morphology, Gram stain and potato rot indicated that Erwinia sp. is the main pathogen. We isolated a several bacterial isolates capable of producing soft-rot symptoms in greenhouse pathogenicity assays. An extensive characterisation involving pathogenicity tests, fatty acid profile, metabolic and physiological properties, ribosomal DNA sequence and intergenic transcribed spacer amplification (ITS-PCR) and restriction banding pattern (ITS-RFLP) was made of each isolate. Three different species: Erwinia cacticida, Pantoea agglomerans and Pseudomonas sp. were identified. Fatty acid and metabolic profiles gave low similarity values of identification but 16S rDNA sequence, ITS-PCR and ITS-RFLP confirmed the identification of E. cacticida. In the phylogenetic tree, E. cacticida from blue agave was grouped neither with E. cacticida type strains nor with Erwinia carotovora. This is the first report that associates E. cacticida with A. tequilana soft-rot symptoms.

Agave tequilana Erwinia cacticida Pantoea agglomerans Pseudomonas sp. soft-rot 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcorn SM, Orum TV, Steigerwalt AG, Foster JLM, Fogleman JC and Brenner, DJ (1991) Taxonomy and pathogenicity of Erwinia cacticida sp. nov. International Journal of Systemic Bacteriology 41: 197–212Google Scholar
  2. Alegria M and González V (1998) Mientras el tequila repunta en el mundo, el agave padece enfermedades en su tierra. Gaceta Universitaria, Universidad de Guadalajara. On-line/86/10–86Google Scholar
  3. Azad HR, Holmes GJ and Cooksey DA (2000) A new blotch disease on sudangrass caused by Pantoea ananas and Pantoea stewartii. Plant Disease 84: 973–979Google Scholar
  4. Barnett SJ, Alami Y, Singleton I and Ryder MH (1999) Diversification of Pseudomonas corrugata 2140 produces new phenotypes altered in GC-FAME, BIOLOG, and in vitro inhibition profiles and taxonomic identification. Canadian Journal of Microbiology 45: 287–298Google Scholar
  5. Beji A, Mergaert J, Gavini F, Izard D, Kersters K, Leclerc H and DeLey J (1988) Subjective synonymy of Erwinia herbicola, Erwinia milletiae and Enterobacter agglomerans, and redefinition of the taxon by genotypic and phenotypic data. International Journal of Systemic Bacteriology 38: 77–88Google Scholar
  6. Coutinho TA, Preisig O, Mergaert J, Cnockaert MC, Riedel KH, Swings J and Wingfield MJ (2002) Bacterial blight and dieback of Eucalyptus species, hybrids and clones in South Africa. Plant Disease 86: 20–25Google Scholar
  7. Daniels MJ, Dow JM and Osbuorn AE (1988) Molecular genetics of pathogenicity in phytopathogenic bacteria. Annual Review of Phytopathology 26: 285–312Google Scholar
  8. DeBoer SH and Sasser M (1986) Differentiation of Erwinia carotovora ssp. carotovora and Erwinia carotovora ssp. atroseptica on their basis of cellular fatty acids composition. Canadian Journal of Microbiology 32: 796–800Google Scholar
  9. Dhingra OD and Sinclair JB (1986) Basic Plant Pathology Methods (pp 290) CRC Press, FloridaGoogle Scholar
  10. Duncan RW, Fernando WGD and Rashid KY (2002) The effect of microbial interaction on sclerotia viability. Canadian Journal of Plant Pathology 24: 384Google Scholar
  11. Farrar JJ, Núñez JJ and Davis RM (2000) Soil influence of saturation and temperature on Erwinia chrysanthemi soft rot of carrot. Plant Disease 84: 665–668Google Scholar
  12. Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791Google Scholar
  13. Fessehaie A, DeBoer SH and Lévesque CA (2002) Molecular characterization of DNA encoding 16S-23S rRNA intergenic spacer regions and 16S rRNA of pectolytic Erwinia species. Canadian Journal of Microbiology 48: 387–398Google Scholar
  14. Frias C (1999) Preven falta de agave. La Jornada. On-line /991223/eco2.htmlGoogle Scholar
  15. Foster JLM and Fogleman JC (1993) Identification and ecology of bacterial communities associated with necroses of three cactus species. Applied and Environmental Microbiology 59: 1–6Google Scholar
  16. Foster JLM and Fogleman JC (1994) Bacterial succession in necrotic tissue of agria cactus Stenocereus gummosus. Applied and Environmental Microbiology 60: 619–625Google Scholar
  17. Gavini F, Mergaert J, Beji A, Mielcarek C, Izard D, Kersters K and De Ley J (1989) Transfer of Enterobacter agglomerans (Beijerink 1988) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. International Journal of Systemic Bacteriology 39: 337–345Google Scholar
  18. Gilho K, Youngjin P and Yonggyun K (2002) Identification of a pathogenic bacterium, Staphylococcus gallinarum, to Bombyx mori. Korean Journal Applied Entomology 41: 279–284Google Scholar
  19. Hauben L, Moore ERB, Vautern L, Steenackers M, Megaert J, Verdonck L and Swings L (1998) Phylogenetic position of phytopathogens within the Enterobacteriaceae. Systematic Applied Microbiology 21: 384–397Google Scholar
  20. Hildebrand DC (1971) Pectate and pectin gels for differentiation of Pseudomonas sp. and other bacterial plant pathogens. Phytopathology 61: 1430–1436Google Scholar
  21. Holt JG, Krieg NR, Sneath PH, Staley JT and Williams ST (1994) Bergey's Manual of Determinative Bacteriology (pp 175-184) Williams and Wilkins, Baltimore, MarylandGoogle Scholar
  22. Hopkins DL and Thompson CM (2002) Evaluation of Citrullus sp. germplasm for resistance to Acidovorax avenae subsp. citrulli. Plant Disease 86: 61–64Google Scholar
  23. Iimura K and Hosono A (1996) Biochemical characteristics of Enterobacter agglomerans and related isolates found in buckwheat seeds. International Journal of Food Microbiology 30: 243–253Google Scholar
  24. Isakeit T, Black MC, Barnes LW and Jones JB (1997) First report of infection of honeydewwith Acidovorax avenae subsp. citrulli. Plant Disease 81: 694Google Scholar
  25. Jones JB, Chase AR and Harris GK (1993) Evaluation of the Biolog GN Microplates system for identification of some plant pathogenic bacteria. Plant Disease 77: 553–558Google Scholar
  26. Lee JS, Chun CO, Hector M, Kim SB, Kim HJ, Park BK, Joo YJ, Lee HJ, Park CS, Ahn JS, Park YH and Mheen TI (1997) Identification of Leuconostoc strains isolated from kimchi using carbon-source utilization patterns. Journal of Microbiology 35: 10–14Google Scholar
  27. Kotoujansky A (1987) Molecular genetics of pathogenesis by soft-rot Erwinias. Annual Review of Phytopathology 25: 405–430Google Scholar
  28. Kwon SW, Go SJ, Kang HW, Ryu JC and Jo JK (1997) Phylogenetic analysis of Erwinia species based on 16S rDNA gene sequences. International Journal of Systemic Bacteriology 47: 1061–1067Google Scholar
  29. Lapwood DH, Read PJ and Spokes J (1984) Methods for assessing the susceptibility of potato tubers of different cultivars to rotting by Erwinia carotovora subspecies atroseptica and carotovora. Plant Pathology 33: 13–20Google Scholar
  30. Larrea-Reynoso E (1998) Estudios preliminares para el control de los hongos Fusarium, Verticillium, Asterina y de una bacteria no clasificada en agave azul (Agave tequilana Weber var. azul). Revista Mexicana de Fitopatología 16: 125Google Scholar
  31. Maniatis T, Fritsch EF and Sambrook J (1989) Molecular cloning: A laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  32. Martínez-Ramírez JL and Virgen-Calleros G (1998) Epidemiología y manejo integrado de problemas fitosanitarios en Agave tequilana Weber var. azul. In: Foro de Análisis de la problemática de la cadena productiva agave-tequila (pp 20-25) CRT Guadalajara, MéxicoGoogle Scholar
  33. Miller G (2000) Agave growers pledge to lower costs. Guadalajara Reporter. On-line/08/12/2000Google Scholar
  34. Persson P and Sletten A (1995) Fatty acid analysis for the identification of Erwinia carotovora subsp. atroseptica and Erwinia carotovora subsp. carotovora. EPPO Bulletin 25: 151–156Google Scholar
  35. Pinto FM, Santos AA, Cardoso JE, Oliveira FC and Lopes CA (2000) Surto de mancha-aquosa em frutos de melão nos estados do Ceará e do Rio Grande do Norte. In: Comunicado T´ecnico Embrapa Agroindustria Tropical 50: 1–4Google Scholar
  36. Pujol CJ and Kado CI (2000) Genetic and biochemical characterization of the pathway in Pantoea citrea leading to pink disease of pineapple. Journal of Bacteriology 182: 2230–2237Google Scholar
  37. Rainey PB, Bailey MJ and Thompson IP (1994) Phenotypic and genotypic diversity of fluorescent pseudomonads isolated from field-grown sugar beet. Microbiology 140: 2315–2331Google Scholar
  38. Ramirez V (1998) Inventario revela existencia de 203 millones de plantas. In: Foro de Análisis de la problemática de la cadena productiva agave-tequila (pp 163-164) CRT, Guadalajara, MéxicoGoogle Scholar
  39. Rivera M (1998) El boom del tequila. La Jornada. On-line /980301/mas-rivera.htmlGoogle Scholar
  40. Saitou N and M Nei (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425Google Scholar
  41. SCFI (1997) Norma Oficial Mexicana. NOM-006-SCFI-1994. Bebidas Alcohólicas-Tequila-Especificaciones. Diario Oficial de La Federación. Ciudad de MéxicoGoogle Scholar
  42. Schwartz HF and Otto K (2000) First report of leaf blight and bulb decay of onion by Pantoea ananatis in Colorado. Plant Disease 84: 808Google Scholar
  43. Seo ST, Furuya N and Takanami 2002 Characterization of Erwinia carotovora subsp. carotovora strains on the basis of cellular fatty acid composition. Journal Faculty Agriculture. Kyushu University 46: 251–256Google Scholar
  44. Smith C and Bartz JA (1990) Variation in the pathogenicity and aggressiveness of strains of Erwinia carotovora subsp. carotovora isolated from different hosts Plant Disease. 74: 505–509Google Scholar
  45. Spröer C, Mendrock V, Swiderski J, Lang E and Stockebrandt (1999) The phylogenetic position of Serratia, Buttiaxella and some other genera of the family Enterobacteriaceae. International Journal of Systemic Bacteriology 49: 1433–1438Google Scholar
  46. Stommel JR, Goth RW, Haynes KC and Seong HK (1996) Pepper (Capsicum annum) soft rot caused by Erwinia carotovora subsp. atroseptica. Plant Disease 80: 1109–1112Google Scholar
  47. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F and Higgins DG (1997) The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24: 4876–4882Google Scholar
  48. Toth IK, Avrova AO and Hyman LJ (2001) Rapid identification and differentiation of the soft rot Erwinias by 16S-23S intergenic transcribed spacer-PCR and restriction fragment length polymorphism analyses. Applied and Environmental Microbiology 67: 4070–4076Google Scholar
  49. Toth IK, Bertheau Y, Hyman LJ, Laplaze L, Lopez MM, McNicol J, Niepold F, Persson P, Salmond GPC, Sletten A, Van der Wolf JM and Perombelon MCM (1999) Evaluation of phenotypic and molecular typing techniques for determining diversity in Erwinia carotovora subsp. atroseptica. Journal Applied of Microbiology 87: 770–781Google Scholar
  50. Valenzuela-Zapata AG (1994) El agave tequilero: Su cultivo e industrialización (pp 119) Agata, MéxicoGoogle Scholar
  51. Wells JM, Sheng WS, Ceponis MJ and Chen TA (1987) Isolation and characterization of isolates or Erwinia ananas from Honeydew melons. Phytopathology 77: 511–514Google Scholar
  52. Widmer F, Seider RJ, Gillevet PM, Watrud LS and DiGiovanni GD (1998) A highly selective PCR protocol for detecting 16S rRNA genes of the genus Pseudomonas (sensu stricto) in environmental samples. Applied and Environmental Microbiology 64: 2545–2553Google Scholar
  53. Wilson WJ and Dillard HR (1999) Assessment of phenotypic variability in Erwinia stewartii based on metabolic profiles. Plant Disease 83: 114–118Google Scholar
  54. Zucker M, Hankin L and Santos D (1972) Factors governing pectate lyase synthesis in soft rot and non-soft rot bacteria. Physiological Plant Pathology 12: 59–67Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • I. Jiménez-Hidalgo
    • 1
  • G. Virgen-Calleros
    • 2
  • O. Martínez-de la Vega
    • 3
  • G. Vandemark
    • 4
  • V. Olalde-Portugal
    • 1
    Email author
  1. 1.Biotechnology and Biochemistry DepartmentCentro de Investigación y de Estudios Avanzados – IPNIrapuatoMéxico
  2. 2.Centro Universitario de Ciencias Biológicas y AgropecuariasJaliscoMéxico
  3. 3.Genetic Engineering DepartmentCentro de Investigaci'on y de Estudios Avanzados – IPNIrapuatoM'exico
  4. 4.USDA-ARSProsserUSA

Personalised recommendations