Environmental Fluid Mechanics

, Volume 4, Issue 3, pp 273–303

Simulation of Ekman Boundary Layers by Large Eddy Model with Dynamic Mixed Subfilter Closure

Article

Abstract

Theoretical analysis of boundary layer turbulence has suggested a feasibility of sufficiently accurate turbulence resolving simulations at relatively coarse meshes. However, large eddy simulation (LES) codes, which employ traditional eddy-viscosity turbulence closures, fail to provide adequate turbulence statistics at coarse meshes especially within a surface layer. Manual tuning of parameters in these turbulence closures may correct low order turbulence statistics but severely harms spectra of turbulence kinetic energy (TKE). For more than decade, engineering LES codes successfully employ dynamic turbulence closures. A dynamic Smagorinsky turbulence closure (DSM) has been already tried in environmental LES. The DSM is able to provide adequate turbulence statistics at coarse meshes but it is not completely consistent with the LES equations. This paper investigates applicability of an advanced dynamic mixed turbulence closure (DMM) to simulations of Ekman boundary layers of high Reynolds number flows. The DMM differs from the DSM by explicit calculation of the Leonard term in the turbulence stress tensor. The Horizontal Array Turbulence Study (HATS) field program has revealed that the Leonard term is indeed an important component of the real turbulence stress tensor.

This paper presents validation of a new LES code LESNIC. The study shows that the LES code with the DMM provides rather accurate low order turbulence statistics and the TKE spectra at very coarse meshes. These coarse LES maintain more energetic small scale fluctuations of velocity especially within the surface layer. This is critically important for success of simulations. Accurate representation of higher order turbulence statistics, however, requires essentially better LES resolution. The study also shows that LES of the Ekman boundary layer cannot be directly compared with conventionally neutral atmospheric boundary layers. The depth of the boundary layer is an important scaling parameter for turbulence statistics.

Large eddy simulation planetary boundary layers turbulence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Proceedings of the 15th Symposium on Boundary Layers and Turbulence: 2002, 15–19 July, Wageningen, the Netherlands.Google Scholar
  2. 2.
    Raash, S. and Schröter M.: 2001, PALM — A large-eddy simulation model performing on massively parallel computers, Meteorol. Z. 10, 363–372.Google Scholar
  3. 3.
    Coleman, G.N., Ferziger, J.H. and Spalart, P.R.: 1990, A numerical study of the turbulent Ekman layer, J. Fluid Mech. 213, 313–348.Google Scholar
  4. 4.
    Hunt, J.C.R. and Morrison, J.F.: 2000, Eddy structure in turbulent boundary layers, Mech. B—Fluids 19, 673–694.Google Scholar
  5. 5.
    Hunt, J.C.R. and Carlotti, P.: 2001, Statistical structure at the wall of the high Reynolds number turbulent boundary layer, Flow, Turbulence Combustion 65, 453–475.Google Scholar
  6. 6.
    Kolmogorov, A.N.: 1941, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Dokl. Acad. Nauk. SSSR 31, 538–541.Google Scholar
  7. 7.
    Chapman, D. R.: 1978, Computational aerodynamics, development and outlook, AIAA J. 17, 1293–1313.Google Scholar
  8. 8.
    Larson, S.: 1986, Hot-Wire Measurements of Atmospheric Turbulence near the Ground, Technical Report of RISOE National Laboratory, DK-4000 Roskilde, Denmark, R-233, 150 pp.Google Scholar
  9. 9.
    Chollet, J.P. and Lesieur, M.: 1981, Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures, J. Atmos. Sci. 38, 2747–2757.CrossRefGoogle Scholar
  10. 10.
    Metais, O. and Lesieur, M.: 1992, Spectral large-eddy simulations of isotropic and stably-stratified turbulence, J. Fluid. Mech. 239, 157–194.Google Scholar
  11. 11.
    Piomelli, U.: 1999, Large-eddy simulation: achievements and challenges, Progr. Aerospace Sci. 35, 335–362.Google Scholar
  12. 12.
    Germano, M., Piomelli, U., Moin, P. and Cabot, W.: 1991, A dynamic subgrid-scale eddy-viscosity model, Phys. Fluids A 5, 2946–2968.Google Scholar
  13. 13.
    Lilly, D.K.: 1966, On the instability of Ekman boundary layer, J. Atmos. Sci. 2, 481–494.Google Scholar
  14. 14.
    Smagorinsky, J.: 1963, General circulation experiments with the primitive equations, Mon. Wea. Rev. 91, 99–164.Google Scholar
  15. 15.
    Zang, Y., Street, R.L. and Koseff, J.R.: 1993, A dynamic mixed subgrid-scale model and its application to turbulent recirculating flow, Phys. Fluids 5, 3186–3196.Google Scholar
  16. 16.
    Baggett, J.S., Jimenez, J. and Kravchenko, A.G.: 1997, Resolution requirements in large-eddy simulations of shear flows, In: Annual Res. Briefs, Center for Turbulence Research, Stanford University, CA, pp. 51–66.Google Scholar
  17. 17.
    Andren, A., Brown, A.R., Graf, J., Mason, P.J., Moeng, C-H., Nieuwstadt, F.T.N. and Schumann, U.: 1994, Large-eddy simulation of a neutrally stratified layer: A comparison of four computer codes, Quart. J. Roy. Meteorol. Soc. 120, 1457–1484.CrossRefGoogle Scholar
  18. 18.
    Kosovic, B.: 1997, Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers, J. Fluid Mech. 336, 151–182.Google Scholar
  19. 19.
    Mason, P.J.: 1994, Large-eddy simulation: A critical review of the technique, Quart. J. Roy. Meteorol. Soc. 120, 1–26.Google Scholar
  20. 20.
    Moeng, C.-H., Cotton, W.R., Bretherton, C., Chlond, A., Khairoutdinov, M., Krueger, S., Lewellen, W.S., MacVean, M.K., Pasquier, J.R.M., Rand, H.A., Siebesma, A.P., Stevens, B. and Sykes, R.I.: 1996, Simulation of a stratocumulus-topped planetary boundary layer: Intercomparison among different numerical codes, Bull. Amer. Meteorol. Soc. 77, 261–278.Google Scholar
  21. 21.
    Porte-Agel, F., Meneveau, C. and Parlange, M.B.: 2000, A scale-dependent dynamic model for large-eddy simulation: Application to a neutral atmospheric boundary layer, J. Fluid Mech. 415, 262–284.Google Scholar
  22. 22.
    Mason, P.J. and Thomson, D.J.: 1992, Stochastic backscatter in large eddy simulations of boundary layers, J. Fluid Mech. 242, 51–78.Google Scholar
  23. 23.
    Sullivan, P.P., McWilliams, J.C. and Moeng, C.-H.: 1994, A subgrid scale model for large eddy simulation of planetary boundary layer flows, Boundary-Layer Meteorol. 71, 247–276.CrossRefGoogle Scholar
  24. 24.
    Vreman, B., Geurts, B. and Kuerten, H.: 1994, On the formulation of the dynamic mixed subgrid-scale model, Phys. Fluids 6, 4057–4059.CrossRefGoogle Scholar
  25. 25.
    Vreman, B., Geurts, B. and Kuerten, H.: 1997, Large-eddy simulation of the turbulent mixing layer, J. Fluid Mech. 339, 357–390.CrossRefGoogle Scholar
  26. 26.
    Kraichnan, R.H.: 1976, Eddy viscosity in two and three dimensions, J. Atmos. Sci. 33, 1521–1536.CrossRefGoogle Scholar
  27. 27.
    Leslie, D.C. and Quarini, G.L.: 1979, The application of turbulence theory to the formulation of subgrid modelling procedures, J. Fluid Mech. 91, 65–91.Google Scholar
  28. 28.
    Tong, C., Wyngaard, J.C. and Brasseur, J.G.: 1999, Experimental study of the subgrid-scale stresses in the atmospheric surface layer, J. Atmos. Sci. 56, 2277–2292.CrossRefGoogle Scholar
  29. 29.
    Kravchenko, A.G. and Moin, P.: 1997, On the effect of numerical errors in large eddy simulations of turbulent flows, J. Comput. Phys. 131, 310–322.CrossRefGoogle Scholar
  30. 30.
    Muschinski, A.: 1996, A similarity theory of locally homogeneous and isotropic turbulence generated by a Smagorinsky-type LES, J. Fluid Mech. 325, 239–260.Google Scholar
  31. 31.
    Zikanov, O., Slinn, D.N. and Dhanak, M.R.: 2002, Turbulent convection driven by surface cooling in shallow water, J. Fluid Mech. 464, 81–111.CrossRefGoogle Scholar
  32. 32.
    Zikanov, O., Slinn, D.N. and Dhanak, M.R.: 2003, Large eddy simulations of the wind-induced turbulent Ekman layer, J. Fluid Mech. 495, 343–368.CrossRefGoogle Scholar
  33. 33.
    Sullivan, P.P., Horst, Th.W., Lenschow, D.H., Moeng, C.-H. and Weil, J.C.: 2003, Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modeling, J. Fluid Mech. 482, 101–139.CrossRefGoogle Scholar
  34. 34.
    Ghosal, S., Lund, T.S., Moin, P. and Akselvoll, K.: 1995, A dynamic localization model for large-eddy simulation of turbulent flows, J. Fluid Mech. 286, 229–255.Google Scholar
  35. 35.
    Germano, M.: 1992, Turbulence: the filtering approach, J. Fluid Mech. 238, 325–336.Google Scholar
  36. 36.
    Salvetti, M.V. and Banerjee, S.: 1995, A priori tests of a new dynamic subgrid-scale model for finite difference large eddy simulations, Phys. Fluids 7, 2831–2847.CrossRefGoogle Scholar
  37. 37.
    Salvetti, M.V. and Beux, F.: 1998, The effect of the numerical scheme on the subgrid scale term in large-eddy simulation, Phys. Fluids 10, 3020–3022.CrossRefGoogle Scholar
  38. 38.
    Andreopoulos, J. and Bradshaw, P.: 1981, Measurements of turbulence structure in the boundary layer on a rough surface, Boundary-Layer Meteorol. 20, 201–213.CrossRefGoogle Scholar
  39. 39.
    Krogstad, P.A., Antonia, R.A. and Browne, L.W.B.: 1992, Comparison between rough-and smooth-wall turbulent boundary layers, J. Fluid Mech. 245, 599–617.Google Scholar
  40. 40.
    Grant, A.L.M.: 1986, Observations of boundary layer structure made during the 1981 KONTUR experiment, Quart. J. Roy. Meteorol. Soc. 112, 825–841.CrossRefGoogle Scholar
  41. 41.
    Pennell, W.T. and LeMone, M.A.: 1974, An experimental study of turbulence structure in the fair-weather trade wind boundary layer, J. Atmos. Sci. 31, 1308–1323.CrossRefGoogle Scholar
  42. 42.
    Tjernströem, M. and Smedman, A.-S.: 1993, The vertical structure of the coastal marine atmospheric boundary layer, J. Geophys. Res. 98(C3), 4809–4826.Google Scholar
  43. 43.
    Brost, R.A., Wyngaard, J.C. and Lenshow, D.H.: 1982, Marine stratocumulus layers. Part II: Turbulence budgets, J. Atmos. Sci. 39, 818–836.Google Scholar
  44. 44.
    Liu, S., Meneveau, C. and Katz, J.: 1994, On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet, J. Fluid Mech. 275, 83–119.Google Scholar
  45. 45.
    Kondo, J., Kanechika, O. and Yasuda, N.: 1978, Heat and momentum transfer under strong stability in the atmospheric surface layer, J. Atmos. Sci. 35, 1012–1021.CrossRefGoogle Scholar
  46. 46.
    Morinishi, Y., Lund, T.S., Vasilyev, O.V., and Moin, P.: 1998, Fully conservative higher order finite difference schemes for incompressible flow, J. Comput. Phys. 143, 90–124.CrossRefGoogle Scholar
  47. 47.
    Sagaut, P. and Grohens, R.: 1999, Discrete filters for large eddy simulation, Int. J. Num. Mech. Fluids 31, 1195–1220.Google Scholar
  48. 48.
    Jameson, A., Schmidt, W. and Turkel, E.: 1981, Numerical simulation of the Euler equations by finite 77 volume methods using Runge—Kutta time stepping schemes, AIAA Paper 81, 1259.Google Scholar
  49. 49.
    Kim, J. and Moin, P.: 1985, Application of fractional step method to incompressible Navier—Stokes equations, J. Comput. Phys. 59, 308–323.CrossRefGoogle Scholar
  50. 50.
    Armfield, S. and Street, R.: 1999, The fractional step method for the Navier-Stokes equations on staggered grids: The accuracy of three variations, J. Comput. Phys. 153, 660–665.CrossRefGoogle Scholar
  51. 51.
    Lesieur, M.: 1997, Turbulence in Fluids, Kluwer Academic Publishers, Dordrecht, 532 pp.Google Scholar
  52. 52.
    Mason, P.J. and Callen, N.S.: 1986, On the magnitude of the subgrid-scale eddy coefficient in large-eddy simulations of turbulent channel flow, J. Fluid Mech. 162, 439–462.Google Scholar
  53. 53.
    Wei, T. and Willmarth, W.W.: 1989, Reynolds-number effects on the structure of a turbulent channel flow, J. Fluid Mech. 204, 57–95.Google Scholar
  54. 54.
    Agee, E. and Gluhovsky, A.: 1999, LES model sensitivities to domains, grids, and large-eddy timescales, J. Atmos. Sci. 56, 599–604.Google Scholar
  55. 55.
    Mason, P.J. and Brown, A.R.: 1994, The sensitivity of large-eddy simulations of turbulent shear flow to subgrid models, Boundary-Layer Meteorol. 70, 133–150.CrossRefGoogle Scholar
  56. 56.
    Mason, P.J. and Brown, A.R.: 1999, On subgrid models and filter operations in large-eddy simulations, J. Atmos. Sci. 56, 2101–2114.CrossRefGoogle Scholar
  57. 57.
    Sorbjan, Z.: 1996, Numerical study of penetrative and 'solid lid’ non-penetrative convective boundary layers, J. Atmos. Sci. 53, 101–112.Google Scholar
  58. 58.
    Schmidt, H. and Schumann, U.: 1989, Coherent structure of the convective boundary layer derived from large-eddy simulations, J. Fluid Mech. 200, 511–562.Google Scholar
  59. 59.
    Moeng, C.-H. and Sullivan, P.: 1994, A comparison of shear-and buoyancy-driven planetary boundary layer flows, J. Atmos. Sci. 51, 999–1022.CrossRefGoogle Scholar
  60. 60.
    Zilitinkevich, S.S. and Esau, I.N.: 2002, On integral measures of the neutral barotropic planetary boundary layer, Boundary-Layer Meteorol. 104, 371–379.CrossRefGoogle Scholar
  61. 61.
    Hess, G.D. and Garratt, J.R.: 2002, Evaluating models of the neutral, barotropic planetary boundary layer using integral measures: Part I. Overview, Boundary-Layer Meteorol. 104, 333–358.Google Scholar
  62. 62.
    Otte, M.J. and Wyngaard, J.C.: 2001, Stably stratified interfacial-layer turbulence from large eddy simulations, J. Atmos. Sci. 58, 3424–3442.CrossRefGoogle Scholar
  63. 63.
    Högström, U., Hunt, J.C.R. and Smedman, A.-S.: 2003, Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer, Boundary-Layer Meteorol. 103, 101–124.Google Scholar
  64. 64.
    Zilitinkevich, S.S. and Esau, I.N.: 2003, The effect of baroclinicity on the depth of neutral and stable planetary boundary layers, Quart. J. Roy. Meteorol. Soc., to appear.Google Scholar
  65. 65.
    Cai, X., Steyn, D.G. and Gartshore, I.S.: 1995, Resolved scale turbulence in the atmospheric surface layer from a large eddy simulation, Boundary-Layer Meteorol. 75, 301–314.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of Earth Science, MeteorologyUppsala UniversitySweden
  2. 2.Nansen Environmental and Remote Sensing CentreBergenNorway

Personalised recommendations