Educational Studies in Mathematics

, Volume 55, Issue 1–3, pp 103–132

Images of the limit of function formed in the course of mathematical studies at the university

  • Malgorzata Przenioslo
Article

Abstract

The paper is based on extensive research carried out on students of mathematics who had completed a university course of calculus. The basic purpose of the research was to determine the students' images of the concept of limit, that is to find out their associations, conceptions and intuitions connected with limits and to determine the degree of their efficiency and the sources of their formation. To achieve the objectives an expanded set of selected problems — simple but not quite standard — and various other research instruments were used. Several classes of images of the limit concept have been identified and described, according to their main foci: neighborhoods, graph approaching, values approaching, being defined at x0, limit of f atx0 equals f(x0), and algorithms.

concept image concept definition limit of a function limit of a sequence teaching understanding university students 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Brousseau, G.: 1997, Theory of Didactic Situations in Mathematics, Kluwer Academic Publishers, Dordrecht.Google Scholar
  2. Cornu, B.: 1983, Apprentissage de la notion de limite: conceptions et obstacles, Doctoral Dissertation, Université Scientifique et Médicale, Grenoble.Google Scholar
  3. Davis, R.B. and Vinner S.: 1986, 'The notion of limit; some seemingly unavoidable misconception stages', The Journal of Mathematical Behavior 5, 281–303.Google Scholar
  4. Dubinsky, E.: 1991, 'Reflective abstraction in advanced mathematical thinking', in D. Tall (ed.), Advanced Mathematical Thinking, Kluwer Academic Publishers, Dordrecht, pp. 95–126.Google Scholar
  5. Dubinsky, E.: 1992, 'A learning theory approach to calculus', in Z.A. Karian (ed.), Symbolic Computation in Undergraduate Mathematics Theory, MAA Notes 24, Washington, pp. 43-55.Google Scholar
  6. Ervynck, G.: 1981, 'Conceptual difficulties for first year university students in the acquisition of the notion of limit of a function', Proceedings of the Fifth Conference of the International Group for the Psychology of Mathematics Education, Berkeley, pp. 330-333.Google Scholar
  7. Ferrini-Mundy, J. and Graham, K.: 1994, 'Research in calculus learning: understanding of limits, derivatives and integrals', in J. Kaput and E. Dubinsky (eds.), Research Issues in Undergraduate Mathematics Learning, MAA Notes 33, Washington, pp. 31-45.Google Scholar
  8. Fischbein, E., Tirosh, D. and Hess, P.: 1979, 'The intuition of infinity', Educational Studies in Mathematics 10, 3–40.Google Scholar
  9. Fischbein, E.: 1987, Intuition in Science and Mathematics. An Educational Approach, D. Reidel Publishing Company, Dordrecht.Google Scholar
  10. Goldin, G.A.: 1990, 'Epistemology, constructivism, and discovery learning in mathematics', Journal for Research in Mathematics Education, Monograph number 4 -Constructivist views on the teaching and learning of mathematics, pp. 31-47.Google Scholar
  11. Harel, G. and Trgalova, J.: 1996, 'Higher mathematics education', in A.J. Bishop, K. Clements, C. Keitel, J. Kilpatrick and C. Laborde (eds.), International Handbook of Mathematics Education, Kluwer Academic Publishers, Dordrecht, pp. 675–700.Google Scholar
  12. Jung, C.G.: 1971, Psychological types, Princeton University Press, Princeton. Longman Dictionary of Contemporary English: 1987, Longman Group UK, London.Google Scholar
  13. Mitroff, I.I. and Kilmann, R.H.: 1975, 'On evaluating scientific research: The contribution of the psychology of science', Technological Forecasting and Social Change 8, s. 163–174.CrossRefGoogle Scholar
  14. Noddings, N.: 1990, 'Constructivism in mathematics education', Journal for Research in Mathematics Education, Monograph number 4-Constructivist views on the teaching and learning of mathematics, pp. 7-18.Google Scholar
  15. Nosal, C.S.: 1992, Diagnoza typow umyslu, PWN, Warszawa.Google Scholar
  16. Piaget, J.: 1977, The Development of Thought: Equilibration of Cognitive Structures, The Viking Press, New York.Google Scholar
  17. Prochnicka, M.: 1991, Informacja a umysl, Universitas, Krakow.Google Scholar
  18. Przenioslo, M.: 2000, Rozumienie granicy funkcji wyniesione ze szkoly sredniej, Takt, Kielce.Google Scholar
  19. Przenioslo, M.: 2001, 'Trudnosci zwiazane z procesem poznawania podstawowych pojec analizy matematycznej', Annales Societatis Mathematicae Polonae, series V -Dydaktyka Matematyki 23, pp. 95–124.Google Scholar
  20. Przenioslo, M.: 2002, Obraz granicy funkcji uksztaltowany w czasie studiow matematycznych, Wydawnictwo Akademii Swietokrzyskiej, Kielce.Google Scholar
  21. Robert, A. and Boschet, F.: 1981, 'L'acquisition du concept de convergence des suites numériques dans l'enseignement supérieur', Bulletin APMEP 330, pp. 649–674.Google Scholar
  22. Robert, A.: 1982, 'L'acquisition de la notion de convergence des suites numériques dans l'enseignement supérieur', Recherches en Didactique des Mathématiques 3, 307–341.Google Scholar
  23. Schwarzenberger, R.L. and Tall, D.: 1978, 'Conflict in the learning of real numbers and limits', Mathematics Teaching 82, 44–49.Google Scholar
  24. Sierpinska, A.: 1985, 'Obstacles épistémologiques relatifs à la notion de limite', Recherches en Didactique des Mathématiques 6, 5–68.Google Scholar
  25. Sierpinska, A.: 1987, 'Humanities students and epistemological obstacles related to limits', Educational Studies in Mathematics 18, 371–397.CrossRefGoogle Scholar
  26. Sierpinska, A.: 1990, 'Some remarks on understanding in mathematics', For the Learning of Mathematics 10, 24–36.Google Scholar
  27. Sierpinska, A.: 1994, Understanding in Mathematics, The Falmer Press, London.Google Scholar
  28. Sierpinska, A.: 1998, 'Three epistemologies, three views of classroom communication: constructivism, sociocultural approaches, interactionism', in H. Steinbring, M.G. Bartolini Bussi and A. Sierpinska (eds.), Language and Communication in the Mathematics Classroom, National Council of Teachers of Mathematics, Reston, pp. 30–62.Google Scholar
  29. Steffe, L.P. and Gale, J. (eds.): 1995, Constructivism in Education, Lawrence Erlbaum Association Publishers, Hillsdale, New Jersey.Google Scholar
  30. Tall, D. and Vinner, S.: 1981, 'Concept image and concept definition in mathematics with particular reference to limit and continuity', Educational Studies in Mathematics 12, 151–169.CrossRefGoogle Scholar
  31. Tall, D.: 1991, 'The psychology of advanced mathematical thinking', in D. Tall (ed.), Advanced Mathematical Thinking, Kluwer Academic Publishers, Dordrecht, pp. 3–23.Google Scholar
  32. Tall, D.: 1996, 'Function and calculus', in A.J. Bishop, K. Clements, C. Keitel, J. Kilpatrick and C. Laborde (eds.), International Handbook of Mathematics Education, Kluwer Academic Publishers, Dordrecht, pp. 289–325.Google Scholar
  33. Vinner, S.: 1991, 'The role of definitions in the teaching and learning mathematics,' in D. Tall (ed.), Advanced Mathematical Thinking, Kluwer Academic Publishers, Dordrecht, pp. 65–81.Google Scholar
  34. Vygotskii, L.S.: 1962, Thought and Language, The M.I.T. Press, New York.Google Scholar
  35. Williams, S.: 1991, 'Models of limits held by college calculus students', Journal for Research in Mathematics Education 22(3), 219–236.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Malgorzata Przenioslo
    • 1
  1. 1.Akademia SwietokrzyskaInstytut MatematykiKielcePoland

Personalised recommendations