Ecotoxicology

, Volume 13, Issue 4, pp 349–369 | Cite as

Toxicity Testing of Fifteen Non-Crop Plant Species with Six Herbicides in a Greenhouse Experiment: Implications for Risk Assessment

  • C. Boutin
  • N. Elmegaard
  • C. Kjær

Abstract

Estimation of risk to plants not targeted by herbicides when used in agricultural or forestry situations requires appropriate data on multiple species. Currently, many questions remain unresolved as to the adequate type and number of species to be tested. This paper presents the result of a unique greenhouse experiment where testing was performed with 15 non-crop plant species sprayed with 6 herbicides. The herbicides were chosen because of their different modes of action and because they are widely used in several countries. The plants favoured were species commonly found in field margins of Europe and/or North America. This dataset (called thereafter Danish/Canadian) was compared to the crop species that had been submitted to the US EPA for the same herbicides. In general, the selected plant species in the Danish/Canadian database were easy to grow and maintain in the greenhouse. The Danish/Canadian plants were overall more sensitive than the species tested in the US EPA data, yielding to a 5% protection threshold (HC5(50)) that was always more conservative. There was a large variability in plant responses among herbicides. Recommendations are provided on species that should and should not be used for risk assessment of non-target plants.

terrestrial plants herbicide toxicity risk assessment pesticide regulation guidelines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Khatib, K., Mink, G. I. and Parker, R. (1992). Detection and tracking of airborne herbicide by using bio-indicator plants. Proc. West. Soc. Weed Sci. 45,27–31.Google Scholar
  2. Aldenberg, T. and Slob, W. (1993). Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data. Ecotoxicol. Environ. Safe. 25, 48–63.Google Scholar
  3. Anderson, W. P. (1977). Weed Science: Principles, 2nd edn. St. Paul, Minnesota: West Publishing.Google Scholar
  4. Baril, A., Jobin, B., Mineau, P. and Collins, B. T. (1994). A Consideration of Inter-species Variability in the Use of the Median Lethal Dose (LD50) in Avian Risk Assessment. Environment Canada, Hull, QC, Canada: Canadian Wildlife Service (headquarters).Google Scholar
  5. Barrett, M. R. and Lavy, T. L. (1983). Effects of soil water content on pendimethalin dissipation. J. Environ. Qual. 12, 504–8.Google Scholar
  6. Beyer, E. M., Duffy, M. J., Hay, J. V. and Schlueter, D. D. (1988). Sulfonylurea herbicides. In P. C. Kearney and D. D. Kaufman (eds) Herbicides: Chemistry, Degradation, and Mode of Action, pp.117–89. New York, US: Marcel Dekker, Inc.Google Scholar
  7. Blackburn, L. G. and Boutin, C. (2003). Subtle effects of herbicide use in the context of genetically modified crops: a case study with glyphosate. Ecotoxicology 12, 271–85.Google Scholar
  8. Blair, A. M. and Martin T. C. (1988). A review of the activity, fate and mode of action of sulfonylurea herbicides. Pest. Sci. 22, 195–219.Google Scholar
  9. Boutin, C. (1999). Herbicides, Defoliants. In D. E. Alexander and R. W. Fairbridge (eds). The Encyclopedia of Environmental Science, pp.316–19. Encyclopedias of Earth Science Series. Dordrecht, Boston, London: Kluwer Academic Publishers.Google Scholar
  10. Boutin, C., Freemark, K. E. and Keddy, C. J. (1993). Proposed Guidelines for Registration of Chemical Pesticides: Nontarget Plant Testing and Evaluation, No. 145. Environment Canada, Hull, QC, Canada: Canadian Wildlife Service (headquarters).Google Scholar
  11. Boutin, C., Freemark, K. E. and Keddy, C. J. (1995). Overview and rationale for developing regulatory guidelines or nontarget plant testing with chemical pesticides. Environ. Toxicol. Chem. 14, 1465–75.Google Scholar
  12. Boutin, C. and Jobin, B. (1998). Intensity of agricultural practices and effects on adjacent habitats. Ecol. Appl. 8, 544–57.Google Scholar
  13. Boutin, C., Lee, H.-B., Peart, T. E., Batchelor, S. P. and Maguire, J. R. (2000). Effect of the sulfonylurea herbicide metsulfuron methyl on growth and reproduction of ve wetland and terrestrial species. Environ. Toxicol. Chem. 19, 2532–41.Google Scholar
  14. Boutin, C. and Rogers, C. A. (2000). Pattern of sensitivity of plant species to various herbicidesan analysis with two databases. Ecotoxicology 9(4), 255–71.Google Scholar
  15. Carlisle, S. M. and Trevors, J. T. (1988). Glyphosate in the environment. Water Air Soil Pollut. 39, 409–20.Google Scholar
  16. Caux, P.-Y., Kent, R. A., Tache, M., Grande, C., Fan, G. T. and MacDonald, D. D. (1993). Environmental fate and effects of dicamba: a Canadian perspective. Rev. Environ. Contam. Toxicol. 133, 1–58.Google Scholar
  17. Conacher, J. and Conacher, A. (1986). Minimum Tillage, Science and Society, No. 22, pp.1–169. Occasional Papers of the Department of Geography, University of Western Australia, Nedlands, Australia: Geowest.Google Scholar
  18. Cuthbert, J. L., McVetty, P. B. E., Freyssinet, G. and Freyssinet, M. (2001). Comparison of the performance of bromoxynil-resistant and susceptible near-isogenic populations of oil-seed rape. Can. J. Plant Sci. 81, 367–72.Google Scholar
  19. Davis, B. N. K. and Williams, C. T. (1990). Buffer zone widths for honeybees from ground and aerial spraying of insecticides. Environ. Pollut. 63, 247–59.Google Scholar
  20. Dekker, J. H. and Chandler, K. (1985). Herbicide effect on the viability of quackgrass (Agropyron repens ) rhizome buds. Can. J. Plant Sci. 65, 1057–64.Google Scholar
  21. Deming, J. M. and Magin, R. W. (1987). Optimisation of biological effcacy through formulation. In Proceedings of the Sixth International Congress of Pesticide Chemistry, pp. 231–4. Oxford, UK: Blackwell scientific Publications.Google Scholar
  22. Dennis, P. and Fry, G. L. A. (1992). Field margins: Can they enhance natural enemy population densities and general arthropod diversity on farmland. Agric. Ecosyst. Environ. 40, 95–115.Google Scholar
  23. Eberlein, C. V., Guttiere, M. J. and Steffen-Campbell, J. (1998). Bromoxynil resistance in transgenic potato clones expressing the bxn gene. Weed Sci. 46, 150–7.Google Scholar
  24. Elmegaard, N., Andersen, P. N., Odderskær, P. and Prang, A. (1999). Food supply and breeding activity of Skylarks in fields with different pesticide treatment. In N. J. Adams and R. H. Slotow (eds). Proc. 22 Int. Ornithol. Congr., Durban, pp.1058–69. Johannesburg: BirdLife South Africa.Google Scholar
  25. Felsot, A. S., Bhatti, M. A., Mink, G. I. and Reisenauer, G. (1996). Biomonitoring with sentinel plants to assess exposure of nontarget crops to atmospheric deposition of herbicide residues. Environ. Toxicol. Chem. 15, 452–9.Google Scholar
  26. Fletcher, J. S., Johnson, F. L. and McFarlane, J. C.(1990). Inffuence of greenhouse versusfield testing and taxonomic differences on plant sensitivity to chemical treatment. Environ. Toxicol. Chem. 9, 769–76.Google Scholar
  27. Fletcher, J. S., Muhitch, M. J., Vann, D. R., McFarlane, J. C. and Benenati, F. E. (1985). Phytotox database evaluation of surrogate plant species recommended by the US Environmental Protection Agency and the Organization for Economic Co-operation and Development. Environ. Toxicol. Chem. 4, 523–32.Google Scholar
  28. Fletcher, J. S., Pffeeger, T. G. and Rarsch, H. C. (1993). Potential environmental risks with the new sulfonylurea herbicides. Environ. Sci. Technol. 27, 2250–2.Google Scholar
  29. Fletcher, J. S., Pffeeger, T. G., Ratsch, H. C. and Hayes, R. (1996). Potential impact of low levels of chlorosulfuron and other herbicides on growth and yield of nontarget plants. Environ. Toxicol. Chem. 15, 1189–96.Google Scholar
  30. Forbes, T. L. and Forbes, V. E. (1993). A critique of the use of distribution-based extrapolation models in ecotoxicology. Funct. Ecol. 7, 249–54.Google Scholar
  31. Frear, D. S. (1976). The benzoic acid herbicides. In P.C. Kearney and D. D. Kaufman (eds). Herbicides: Chemistry, Degradation,and Mode of Action, pp.541–607. New York, US: Marcel Dekker, Inc.Google Scholar
  32. Freedman, B. (1991). Controversy over the use of herbicides in forestry,with particular reference to glyphosate usage. J. Environ. Sci. Health C8, 277–86.Google Scholar
  33. Freemark, K. E. and Boutin, C. (1995). Impacts of agricultural herbicide use on terrestrial wildlife in temperate landscapes: a review with special reference to North America. Agric. Ecosyst. Environ. 52, 67–91.Google Scholar
  34. Freyssinet, G., Pelissier, B., Freyssinet, M. and Delon, R. (1996). Crops resistant to oxynils: from the laboratory to the market. Field Crops Res. 45, 125–33.Google Scholar
  35. Ghassemi, M., Quinlivan, S. and Dellarco, M. (1982). Environmental effects of new herbicides for vegetation control in forestry. Environ. Int. 7, 389–401.Google Scholar
  36. Gronwald, J. W. (1991). Lipid biosynthesis inhibitors. Weed Sci. 39, 435–49.Google Scholar
  37. Hamill, A. S., Marriage, P. B. and Friesen, G. (1977). A method for assessing herbicide performance in small plot experiments. Weed Sci. 25, 386–9.Google Scholar
  38. Hess, F. D. (1987). Relationship of plant morphology to herbicide application and absorption. In C. G. McWhorter and M. R. Gebhardt (eds). Methods of Applying Herbicides, pp. 19–35.: Weed Science Society of America.Google Scholar
  39. Holst, R. W. and Ellwanger, T. C. (1982). Pesticide assessment guidelines, Subdivision J. Hazard Evaluation: Non-target Plants, EPA 540/9-82-020. Washington, DC: US Environmental Protection Agency.Google Scholar
  40. Jobin, B., Boutin, C. and DesGranges, J.-L. (1997). Effects of agricultural practices on theffora of hedgerows and woodland edges in southern Quebec. Can. J. Plant Sci. 77, 293–9.Google Scholar
  41. Kennedy, E. R. and Jordan, P. A. (1985). Glyphosate and 2, 4-D: the impact of two herbicides on moose browse in forest plantations. Alces 21, 1–11.Google Scholar
  42. Kjær, C. (1994). Sublethal effects of chlorsulfuron on black bindweed (Polygonum convolvulus L.) Weed Res. 34, 453–9.Google Scholar
  43. Kjær, C. and Elmegaard, N. (1996). Effect of herbicide treatment on host plant quality to a leaf-eating beetle. Pesticide Science 47, 319–25.Google Scholar
  44. Kjær, C., Pedersen, M. B. and Elmegaard, N. (1998). Effects of soil copper on black bindweed (Fallopia convolvulus ) in the laboratory and in the field. Arch. Environ. Contam. Toxicol. 35, 14–9.Google Scholar
  45. Knowles, D. A. (1995). Trends in the use of surfactants for pesticide formulations. Pestic. Outlook 6, 31–4.Google Scholar
  46. Lagerlöf, J., Stark, J. and Svensson, B. (1992). Margins of agricultural fields as habitats for pollinating insects.Agric. Ecosyst. Environ. 40, 117–24.Google Scholar
  47. Liu, L., Punja, Z. K. and Rahe, J. E. (1997). Altered root exudation and suppression of induced lignification as mechanisms of predisposition by glyphosate of bean roots (Phaseolus vulgaris L.) to colonization by Pythium spp. Physiol. Mol. Plant Pathol. 51, 110–27.Google Scholar
  48. Marrs, R. H., Frost, A. J. and Plant, R. A. (1991). Effects of herbicide spray drift on selected species of nature conservation interest: The effects of plant age and surrounding vegetation structure. Environ. Pollut. 69, 223–35.Google Scholar
  49. Marrs, R. H., Williams, C. T., Frost, A. J. and Plant, R. A. (1989). Assessment of the effects of herbicide spray drift on a range of plant species of conservation interest. Environ. Pollut. 59, 71–86.Google Scholar
  50. Matthes, B., Schmalfub, J. and Böger, P. (1998). Chloroacetamide mode of action, II: Inhibition of very long chain fatty acid synthesis in higher plants. Z. Naturforsch. 53c, 1004–11.Google Scholar
  51. Maybank, J., Yoshida, K. and Grover, R. (1978). Spray drift from agricultural pesticide applications. J. Air Pollut. Control Assoc. 28(10), 1009–14.Google Scholar
  52. Miljøstyrelsen 2002. Bekæmpelsesmiddelsstatistik. Orientering fra Miljøstyrelsen nr. 5 (2002). København (Danish Environmental Protection Agency 2002. Pesticide statistics.Orientation/Information from EPA no.5, 2002, Copenhagen).Google Scholar
  53. Moberg, W. K. and Cross, B. (1990). Herbicides inhibiting branched-chain amino acid biosynthesis. Pestic. Sci. 29, 241–6.Google Scholar
  54. Monsanto Canada, Inc. (1991). Roundup Liquid Herbicide Agricultural and Industrial: Complete Directions for Use, Information Booklet.Google Scholar
  55. Muir, D. C. G., Kenny, D. F., Grift, N. P., Robinson, R. D., Titman, R. D. and Murkin, H. R. (1991). Fate and acute toxicity of bromoxynil esters in an experimental prairie wetland. Environ. Toxicol. Chem. 10, 395–406.Google Scholar
  56. Nordby, A. and Skuterud, R. (1975). The effects of boom height, working pressure and wind speed on spray drift. Weed Res. 14, 385–95.Google Scholar
  57. Okkerman, P. C., van de Plassche, E. J., Slooff, W., Van Leeuwen, C. J. and Canton, J. H. (1991). Ecotoxicological effects assessment:a comparison of several extrapolation procedures. Ecotoxicol. Environ. Safe. 21, 182–93.Google Scholar
  58. Organisation for Economic Co-operation and Development. (1984). Terrestrial Plants, Growth Test #208. OECD Guidelines for Testing of Chemicals. Paris: France.Google Scholar
  59. Payne, N., Feng, J. and Reynolds, P. (1987). Off-target measurements and buffers required around water for aerial glyphosate application. FMP-X-80. Forest Pest Management Institute.Google Scholar
  60. Pestemer, W. and Zwerger, P. (1999). Application of a stan-dardized bioassay to estimate the phytotoxic effects of frequently used herbicides on non-target plants. XI. pp. 763–70. Symposium Pesticide Chemistry–Human and Environmental Exposure to Xenobiotics. Cremona.Google Scholar
  61. Peterson, H. G., Boutin, C., Martin, P. A., Freemark, K. E., Ruecker, N. J. and Moody, M. J. (1994). Aquatic phytotoxicity of 23 pesticides applied at expected environmental concentrations. Aquat. Toxicol. 28, 275–92.Google Scholar
  62. Poster, J. (1986). Command herbicide: the rookie battles controversy. Crops Soils Mag. 39, 8–11.Google Scholar
  63. Potts, G. R. (1970). Recent changes in the farmland fauna with special reference to the decline of the grey partridge. Bird Study 17(2), 145–66.Google Scholar
  64. Potts, G. R. (1985). Herbicides and the decline of the partridge: an international perspective. In Weeds, 983 pp.Fording-bridge, England: The British Crop Protection Council.Google Scholar
  65. Ribo, J. M. (1986). “Roundup ”(Glyphosate): A TRC Technical Review. Saskatchewan: Toxicology Research Centre, University of Saskatchewan.Google Scholar
  66. Rodenhouse, N. L. and Best, L. B. (1994). Foraging patterns of vesper sparrows (Pooecetes gramineus ) breeding in crop-land. Am. Midl. Nat. 131, 196–206.Google Scholar
  67. Sanders, G. E. and Pallett, K. E. (1987). Studies into the differential activity of the hydroxybenzonitrile herbicides. Pestic. Biochem. Physiol. 28, 163–71.Google Scholar
  68. Schwinn, F. J. (1988). Importance, possibilities and limitations of chemical control now and in future–an industry view. Ecol. Bull. 39, 82–8.Google Scholar
  69. Sotherton, N. W. and Robertson, P. A. (1990). Indirect impacts of pesticides on the production of wild gamebirds in Britain. Perdix V. In K. E. Church, R. E. Warner, and S. J. Brady (eds). Gray Partridge and Ring-necked Pheasant Workshop, pp.84–103. Emporia, Kansas: Kansas Department of Wildlife and Parks.Google Scholar
  70. Statistics Canada. 1992. Agricultural profile of Canada. Part 1. Catalogue, pp.93–350.Google Scholar
  71. Stephenson, G. R., Solomon, K. R., Frank, R. and Hsiang, T. (1995). Chemical and Biological Pesticides in the Environment. Department of Environmental Biology, Guelph, Ontario, Canada: University of Guelph.Google Scholar
  72. Sterling, T. M. and Hall, J. C. (1997). Mechanism of action of natural auxins and the auxinic herbicides. In R. M. Roe, J. Burton and R. Kuhr (eds). Herbicide Activity: Toxicology, Biochemistry and Molecular Biology, pp.111–41. Amsterdam, The Netherlands: IOS Press.Google Scholar
  73. Tarkowska, J. A., Kossut, E. and Dobrzynska, K. (1994). The effect of pendimethalin on plant microtubules. Fragm. Flor. Geobot. 39, 297–307.Google Scholar
  74. Thomson, W. T. (1989). Agricultural Chemicals Book II: Herbicides.Fresno, CA: Thomson Publications.Google Scholar
  75. Thomson, W. T. (2000). Agricultural Chemicals Book IV: Fungicides.Fresno, CA: Thomson Publications.Google Scholar
  76. Thomson, W. T. (2001). Agricultural Chemicals Book I: Insecticides.Fresno, CA: Thomson Publications.Google Scholar
  77. Tomlin, C. D. S. (1997). The Pesticide Manual, 11th edn. Binfield, Berks, UK: British Crop Protection Council.Google Scholar
  78. Van Straalen, N. M. and Van Leeuwen, C. J. (2002). European history of species sensitivity distributions. In L. Posthuma, G. W. Suter II and T. P. Traas (eds). Species Sensitivity Distributions in Ecotoxicology, pp.19–34. Boca Raton, Florida: Lewis Publishers.Google Scholar
  79. Vaughn, K. C. and Lehnen, L. P. Jr. (1991). Mitotic disrupter herbicides. Weed Sci. 39, 450–7.Google Scholar
  80. Worthing, C. R. and Hance, R. J. (1991). The Pesticide Manual– A World Compendium, 9th edn. Farnahm, Surrey, U. K.: British Crop Protection Council.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • C. Boutin
    • 1
  • N. Elmegaard
    • 2
  • C. Kjær
    • 2
  1. 1.National Wildlife Research Centre, Canadian Wildlife Service, Environment CanadaCarleton UniversityCanada
  2. 2.National Environmental Research InstituteSilkeborgDenmark

Personalised recommendations