Advertisement

Environmental Biology of Fishes

, Volume 71, Issue 1, pp 63–72 | Cite as

Characterization of the Aerial Escape Response of the African Butterfly Fish, Pantodon buchholzi Peters

  • William M. Saidel
  • Gabriel F. Strain
  • Shannon K. Fornari
Article

Abstract

We studied the startle response of the African butterfly fish, Pantodon buchholzi (Osteoglossomorpha, Osteoglossoidea). It is an upward movement, mediated by abduction of the pectoral fins, and is elicited by mechanical and visual stimuli. Because this fish inhabits the first few centimeters beneath the water surface, its startle response results in an aerial excursion that may be described as ballistic-like, following a motion as defined by linear acceleration. We show that the aerial excursion is well-modeled by a parabola. On average, a fish jumps no more than twice its height and travels horizontally about five times its standard length. The fish may exhibit variable in-flight trunk and fin movements, but neither increases the travel distance in air following the initial in-water propulsive event. Similar vertical jumps also occur entirely within the water column suggesting that this motor behavior of Pantodon is a general escape behavior analogous to a Mauthner neuron-induced escape response. The variability in its posture in air and its direction of motion after reentering the water enhances this act of vertical flight as a step in this fish's escape behavior. The aerial aspect of its escape behavior is only a consequence of its position in the water column.

startle reflex pectoral fin dependency flying fish 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auerbach, A. A. & M. V. L. Bennett. 1969. Chemically mediated transmission at a giant fiber synapse in the central nervous system of a vertebrate. J. Gen. Physiol. 53: 183–210.CrossRefPubMedGoogle Scholar
  2. Bond, C. E. 1979. Biology of Fishes, W. B. Saunders, Philadelphia, Pennsylvania. 750 pp.Google Scholar
  3. Breder, C. M. 1937. The perennial flying fish controversy. Science 86: 420–422.Google Scholar
  4. Clark, F. N. 1925. The life history of Leuresthes tenuis, an atherine fish with tide controlled spawning habits. California Fish and Game Commission, Fisheries Bulletin 10. 51 pp.Google Scholar
  5. Davenport, J. 1994. How and why do flying fish fly? Rev. Fish Biol. Fish. 40: 184–214.Google Scholar
  6. Diamond, J. 1971. The Mauthner cell. pp. 265–346. In: W. S. Hoar & D. J. Randall (eds. ) Fish Physiology. Vol. 5. Academic Press, New York.Google Scholar
  7. Eaton, R. C., R. A. Bombardieri & D. L. Meyer. 1977. The Mauthner-initiated startle response in teleost fish. J. Exp. Biol. 66: 65–81.PubMedGoogle Scholar
  8. Eaton, R. C. & R. A. Bombardieri. 1978. Behavioral functions of the Mauthner neuron. pp. 221–244. In: D. Faber & H. Korn (ed. ) Neurobiology of the Mauthner Cell. Raven Press, New York.Google Scholar
  9. Eaton, R. C., R. K. K. Lee & M. B. Foreman. 2001. The Mauthner cell and other identified neurons of the brainstem escape network of fish. Prog. Neurobiol. 63: 467–485.CrossRefPubMedGoogle Scholar
  10. Fish, F. E. 1990. Wing design and scaling of flying fish with regard to flight performance. J. Zool. Lond. 221: 391–403.Google Scholar
  11. Gill, T. 1905. Parental care among the freshwater fishes. Smithson. Inst. Rep. 1688: 403–581.Google Scholar
  12. Godin, J.-G. J. 1997. Evading predators. pp. 191–236. In: J.-G. J. Godin (ed. ) Behavioural Ecology of Teleost Fishes. Oxford University Press, Oxford.Google Scholar
  13. Graham, J. B. 1997. Air-Breathing Fishes: Evolution, Diversity, and Adaptation, Academic Press, London. 380 pp.Google Scholar
  14. Greenwood, P. H. & K. S Thomson. 1960. The Pectoral Anatomy of Pantodon buchholzi Peters (A Freshwater Flying Fish) and the related osteoglossidae. Proc. R. Soc. Biol. Sci. Ser. B 135: 283–302.Google Scholar
  15. Hale, M. E. 2002. S-and C-start escape responses of the muskel-lunge (Esox masquinongy) require alternative neuromotor mechanisms. J. Exp. Biol. 205: 2005–2016.PubMedGoogle Scholar
  16. Hubbs, C. L. 1933. Observations on the flight of fishes, with a statistical study of the flight of the Cypselurinae and remarks on the evolution of flight of fishes. Papers of the Michigan Academy of Science, Arts, and Letters. 17: 575–611.Google Scholar
  17. Kawachi, K., Y. Inada & A. Azuma. 1993. Optimal flight path of flying fish. J. Theoret. Biol. 163: 145–159.CrossRefGoogle Scholar
  18. Lagler, K. F., J. E. Bardach, R. R. Miller & D. R. M. Passino. 1977. Ichthyology, 2nd edition. Wiley & Sons, New York. 391 pp.Google Scholar
  19. Lauder, G. V. & K. F. Leim. 1983. The evolution and interrelation-ships of the Actinopterygian fishes. Bull. Mus. Compar. Zool. 150: 95–197.Google Scholar
  20. Lin J. W., D. S. Faber & M. R. Wood. 1983. Organized projection of the goldfish saccular nerve onto the Mauthner cell lateral dendrite. Brain Res. 274: 319–324.CrossRefPubMedGoogle Scholar
  21. Lowe-McConnell, R. H. 1975. Fish Communities in Tropical Freshwaters, Longman, London. 160 pp.Google Scholar
  22. Marshall, N. B. 1970. The Life of Fishes, Universe Books, New York. 443 pp.Google Scholar
  23. Marshall, N. B. 1971. Explorations in the Life of Fishes, Harvard University Press, Cambridge, Massachusetts. 336 pp.Google Scholar
  24. Nelson, J. S. 1994. Fishes of the World, 3rd edition. Wiley & Sons, New York. 394 pp.Google Scholar
  25. Norman, J. R. 1975. A History of Fishes, 3rd revised edition by P. H. Greenwood, Halsted Books, London. 351 pp.Google Scholar
  26. Pellegrin, J. 1923. Le poissons des eaux douces de l'Afrique occi-dentale (du Sénégal au Niger). Gouv. Gén l'Afrique Occ. Fr., Pub. Com. d'Etud. Hist. Paris. 373 pp.Google Scholar
  27. Poll, M. 1953. Le poissons d'aquarium du Congo Belge. Bulletins de la Society royale de zoologie d'Anvers 2: 1–48.Google Scholar
  28. Rayner, J. M. V. 1981. Flight adaptations in vertebrates. Symposia of the Zoological Society London 48: 137–172.Google Scholar
  29. Richmond, M. D. 1997. A Guide to the Seashores of Eastern Africa and the Western Indian Ocean Islands. Sida/Department for Research Cooperation, SAREC. Zanzibar, Tanzania. 448 pp.Google Scholar
  30. Teguels, G. G., G. McG. Reid & R. P. King. 1992. Fishes of the Cross River basin (Cameron-Nigeria)}. Taxonomy, zoogeography, ecology, and conservation}. Belgium Royal Museum, Annales Sciences Zoologiques, 266}. 13Google Scholar
  31. Thompson, W. F. & J. B. Thompson. 1919. The spawning of the grunion (Leuresthes tenuis)}. California Fish and Game Commission, Fish. Bull}. 3}. 2Google Scholar
  32. Weihs, D. 1973. The mechanism of rapid starting of slender fish. Biorheology 10: 343–350.PubMedGoogle Scholar
  33. Zottoli, S. J. 1977. Correlation of the startle reflex and Mauthner cell auditory responses in unrestrained goldfish. J. Exp. Biol. 66: 243–254.PubMedGoogle Scholar
  34. Zottoli, S. J. 1978. Comparison of Mauthner cell size in teleosts. J. Comp. Neurol. 178: 741–758.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • William M. Saidel
    • 1
  • Gabriel F. Strain
    • 1
  • Shannon K. Fornari
    • 1
  1. 1.Department of Biology, Rutgersthe State University of New JerseyCamdenU.S.A

Personalised recommendations