Advertisement

Environmental Biology of Fishes

, Volume 70, Issue 3, pp 203–209 | Cite as

Homing and Daytime Tidal Movements of Juvenile Snappers (Lutjanidae) between Shallow-Water Nursery Habitats in Zanzibar, Western Indian Ocean

  • Martijn Dorenbosch
  • Marieke C. Verweij
  • Ivan Nagelkerken
  • Narriman Jiddawi
  • Gerard van der Velde
Article

Abstract

We studied daily tidal movements of tagged juvenile Lutjanus fulviflamma and Lutjanus ehrenbergii between two adjacent habitats, a subtidal channel and shallow tidal notches in the fossil reef terrace, in a shallow marine bay on Zanzibar Island (Tanzania). Due to a large tidal range, the notches were dry at low-tide and were only accessible to the snappers at high-tide. Of the resighted individuals, 48% showed clear movement between the two habitats, orientated in a direction perpendicular to the tidal currents. Individuals resighted more than once showed site fidelity, indicating homing in both the channel and the notches. We suggest that a significant part of this population of juvenile snappers may move from a low-tide resting habitat to a high-tide resting habitat during the daytime, perhaps to avoid predation by larger predators that may enter the channel at high-tide.

coral reef fishes migration site fidelity seagrass beds tidal channels marine bay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beets, J. 1997. Effects of a predatory fish on the recruitment and abundance of Caribbean coral reef fishes. Mar. Ecol. Prog. Ser. 148: 11-21.Google Scholar
  2. Cocheret de la Morinière, E., B.J.A. Pollux, I. Nagelkerken & G. van der Velde. 2002. Post-settlement life cycle migration patterns and habitat preferences of coral reef fish that use seagrass and mangrove habitats as nurseries. Estuar. Coast. Shelf Sci. 55: 309-321.Google Scholar
  3. Forward, R.B. Jr. & R.A. Tankersley. 2001. Selective tidal-stream transport of marine animals. Oceanogr. Mar. Biol. Annu. Rev. 39: 305-353.Google Scholar
  4. Friedlander, A.M., J.D. Parrish & R.C. Defelice. 2002. Ecology of the introduced snapper Lutjanus kasmira (Forsskal) in the reef fish assemblage of a Hawaiian bay. J. Fish Biol. 60: 28-48.Google Scholar
  5. Gibson, R.N. 1999. Movement and homing in intertidal fishes. pp. 97-125. In: M.H. Horn, K.L.M. Martin & M.A. Chotkowski (ed.) Intertidal Fishes, Life in Two Worlds, Academic Press, San Diego.Google Scholar
  6. Gillanders, B.M., K.W. Able, J.A. Brown, D.B. Eggleston & P.F. Sheridan. 2003. Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: An important component of nurseries. Mar. Ecol. Prog. Ser. 247: 281-295.Google Scholar
  7. Griffiths, M.H. & C.G. Wilke. 2002. Long-term movement patterns of five temperate-reef fishes (Pisces: Sparidae): Implications for marine reserves. Mar. Freshw. Res. 53: 233-244.Google Scholar
  8. Hamilton, H.G.H. & W.H. Brakel. 2003. Structure and coral fauna of East African reefs. Bull. Mar. Sci. 34: 248-266.Google Scholar
  9. Hindell, J.S., G.P. Jenkins & M.J. Keough. 2000. Evaluating the impact of predation by fish on the assemblage structure of fishes associated with seagrass (Heterozostera tasmanica) (Martens ex Ascherson) den Hartog, and unvegetated sand habitats. J. Exp. Mar. Biol. Ecol. 255: 153-174.Google Scholar
  10. Kramer, D.L. & M.R. Chapman. 1999. Implications of fish home range size and relocation for marine reserve function. Environ. Biol. Fish. 55: 65-79.Google Scholar
  11. McClanahan, T.R. & S. Mangi. 2000. Spillover of exploitable fishes from a marine park and its effect on the adjacent fishery. Ecol. Appl. 10: 1792-1805.Google Scholar
  12. Morrison, M.A., M.P. Francis, B.W. Hartill & D.M. Parkinson. 2002. Diurnal and tidal variation in the abundance of the fish fauna of a temperate tidal mudflat. Estuar. Coast. Shelf Sci. 54: 793-807.Google Scholar
  13. Nagelkerken, I. & G. van der Velde. 2002. Do non-estuarine mangroves harbour higher densities of juvenile fish than adjacent shallow-water and coral reef habitats in Curaçao (Netherlands Antilles)? Mar. Ecol. Prog. Ser. 245: 191-204.Google Scholar
  14. Nagelkerken, I., M. Dorenbosch, W.C.E.P. Verberk, E. Cocheret de la Morinière & G. van der Velde. 2000a. Day-night shifts of fishes between shallow-water biotopes of a Caribbean bay, with emphasis on the nocturnal feeding of Haemulidae and Lutjanidae. Mar. Ecol. Prog. Ser. 194: 55-64.Google Scholar
  15. Nagelkerken, I., M. Dorenbosch, W.C.E.P. Verberk, E. Cocheret de la Morinière & G. van der Velde. 2000b. Importance of shallow-water biotopes of a Caribbean bay for juvenile coral reef fishes: patterns in biotope association, community structure and spatial distribution. Mar. Ecol. Prog. Ser. 202: 175-193.Google Scholar
  16. Ogden, J.C. & N.S. Buckman. 1973. Movements, foraging groups, and diurnal migrations of the striped parrotfish Scarus croicensis Bloch (Scaridae). Ecology 54: 589-596.Google Scholar
  17. Ogden, J.C. & P.R. Ehrlich. 1977. The behaviour of heterotypic resting schools of juvenile grunts (Pomadasyidae). Mar. Biol. 42: 273-280.Google Scholar
  18. Rangeley, R.W. & D.L. Kramer. 1995. Tidal effects on habitat selection and aggregation by juvenile pollock Pollachius virens in the rocky intertidal zone. Mar. Ecol. Prog. Ser. 126: 19-29.Google Scholar
  19. Roberts, C.M. 1997. Connectivity and management of Caribbean marine reserves. Science 278: 1454-1457.Google Scholar
  20. Robertson, A.I. & N.C. Duke. 1990. Mangrove fish-communities in tropical Queensland, Australia: Spatial and temporal patterns in densities, biomass and community structure. Mar. Biol. 104: 369-379.Google Scholar
  21. Ross, S.W. & J.E. Lancaster. 2002. Movements and site fidelity of two juvenile fish species using surf zone nursery habitats along the southeastern North Carolina coast. Environ. Biol. Fish. 63: 161-172.Google Scholar
  22. Rowley, R.J. 1994. Case studies and reviews: Marine reserves in fisheries management. Aquat. Conserv. Mar. Freshw. Ecosyst. 4: 233-254.Google Scholar
  23. Sedberry, G.R. & N. Cuellar. 1993. Planktonic and benthic feeding by the reef-associated vermilion snapper, Rhomboplites aurorubens (Teleostei, Lutjanidae). Fish. Bull. 91: 699-709.Google Scholar
  24. Sheaves, M. & B. Molony. 2000. Short-circuit in the mangrove food chain. Mar. Ecol. Prog. Ser. 199: 97-109.Google Scholar
  25. Vance, D.J., M.D.E. Haywood, D.S. Heales, R.A. Kenyon, N.R. Loneragan & R.C. Pendrey. 1996. How far do prawns and fish move into mangroves? Distribution of juvenile banana prawns Penaeus merguiensis and fish in a tropical mangrove forest in northern Australia. Mar. Ecol. Prog. Ser. 131: 115-124.Google Scholar
  26. Watson, M., J.L. Munro & F.R. Gell. 2002. Settlement, movement and early juvenile mortality of the yellowtail snapper Ocyurus chrysurus. Mar. Ecol. Prog. Ser. 237: 247-256.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Martijn Dorenbosch
    • 1
  • Marieke C. Verweij
    • 1
  • Ivan Nagelkerken
    • 1
  • Narriman Jiddawi
    • 2
  • Gerard van der Velde
    • 1
  1. 1.Department of Animal Ecology & EcophysiologyUniversity of NijmegenNijmegenThe Netherlands
  2. 2.Institute of Marine SciencesZanzibarTanzania

Personalised recommendations