Environmental Biology of Fishes

, Volume 70, Issue 1, pp 31–41 | Cite as

Movement, Home Range and Site Fidelity of the Weedy Seadragon Phyllopteryx taeniolatus (Teleostei: Syngnathidae)

  • Jaime Sanchez-Camara
  • David J. Booth

Abstract

We measured for the first time movement, home range and site fidelity of the protected and endemic Australian fish weedy seadragon Phyllopteryx taeniolatus. Ninety-two individuals were identified using visual implant fluorescent elastomer and studied over a one-year period. Identified animals remained at the same site over the year within limited home ranges. These home ranges and the movement patterns recorded were independent of sex although movement to shallow sheltered waters to hatch the young was observed at the end of the breeding season for some pregnant males. The site fidelity and restricted home range of the weedy seadragon, as well as the reproduction-related movement have implications for effective management of this protected species.

common seadragon conservation management elastomer tagging persistence reproduction-related movement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayer, R.D. 1980. Size, seasonality, and sex ratios of the bay pipefish (Syngnathus leptorhynchus) in Oregon. Northwest Sci. 54: 161-167.Google Scholar
  2. Beukers, J.S., G.P. Jones & R.M. Buckley. 1995. Use of implant microtags for studies of populations of small reef fish. Mar. Ecol. Prog. Ser. 125: 61-66.Google Scholar
  3. Berglund, A. & G. Rosenqvist. 1993. Selective males and ardent females in pipefishes. Behav. Ecol. Sociobiol. 32: 331-336.Google Scholar
  4. Connolly, R.M., A.J. Melville & J.K.Keesing. 2002a. Abundance, movement and individual identification of leafy seadragons, Phycodurus eques (Pisces: Syngnathidae). Mar. Freshw. Res. 53: 777-780.Google Scholar
  5. Connolly, R.M., A.J. Melville & K.M. Preston. 2002b. Patterns of movement and habitat use by leafy seadragons tracked ultrasonically. J. Fish. Biol. 61: 684-695.Google Scholar
  6. Edgar, G.J. 2000. Australian Marine Life. The Plants and Animals of Temperate Waters. Reed New Holland. 425 pp.Google Scholar
  7. Gronell, A.M. 1984. Courtship, spawning and social organization of the pipefish, Corythoichthys intestinalis (Pisces: Syngnathidae) with notes on two congeneric species. Z. Tierpsychol. 65: 1-24.Google Scholar
  8. Herald, E.S. 1959. From pipefish to seahorse-a study of phylogenetic relationships. Proc. Calif. Acad. Sci. 29: 465-473.Google Scholar
  9. Howard, R.K. & J.D. Koehn. 1985. Population dynamics and feeding ecology of pipefish (Syngnathidae) associated with eelgrass beds of Western Port, Victoria. Aust. J. Mar. Freshw. Res. 36: 361-70.Google Scholar
  10. Hutchins, B.S. 1986. Sea Fishes of Southern Australia. Swainston Publishing, Perth. 95 pp.Google Scholar
  11. Jones, A.G. & J.C. Avise. 2001. Mating systems and sexual selection in male-pregnant pipefish and seahorses: Insights from microsatellite-based studies of maternity. Amer. Genetic Assoc. 92: 150-158.Google Scholar
  12. Kuiter, R.H. 1987. Note sur les soins parentaux, l'eclosion et l'elevage des Dragons de mer (Syngnathidae). Rev. Franc. Aquar. 14: 113-122.Google Scholar
  13. Kuiter, R.H. 2000. Seahorses, Pipefish & Their Relatives. England: TMC publications. 79 pp.Google Scholar
  14. Kuiter, R.H. 2001. Revision of the Australian seahorses of the genus Hippocampus (Syngnathiformes: Syngnathidae) with descriptions of nine newspecies. Rec. Aust. Mus. 53: 293-340.Google Scholar
  15. Kvarnemo, C., G.I. Moore, A.G. Jones, W.S. Nelson & J.C.Avise. 2000. Monogamous pair bonds and mate switching in theWestern Australian seahorse Hippocampus subelongatus. J. Evol. Biol. 13: 882-888.Google Scholar
  16. Lazzari, M. A. & K.W. Able. 1990. Northern pipefish, Syngnathus fuscus, occurrences over the Mid-Atlantic Bight continental shelf: Evidence of seasonal migration. Environ. Biol. Fish. 27: 177-185.Google Scholar
  17. Lourie, S.A., J.C. Pritchard, S.P. Casey, S.K. Truong, H.J. Hall, & A.C.J. Vincent. 1999. The taxonomy of Vietnam's exploited seahorses (family Syngnathidae). Biol. J. Linn. Soc. 66: 231-256Google Scholar
  18. Masonjones, H.D. & S.M. Lewis. 1996. Courtship behaviour in thedwarf seahorse, Hippocampus zosterae. Copeia 3: 634-640.Google Scholar
  19. Morgan, R.I.G. & D.S. Paveley. 1996. A simple batch mark for fish studies using injected elastomer. Aqua. Res. 27: 631-633.Google Scholar
  20. Olsen, E.M. & L.A. Vollestad. 2001. An evaluation of Visible Implant Elastomer for marking age-0 brown trout. N. Amer. J. Fish. Manag. 21: 967-970.Google Scholar
  21. Payne, M.F. & R.J. Rippingale. 2000. Rearing West Australian seahorse, Hippocampus subelongatus, juveniles on copepod nauplii and enriched Artemia. Aquaculture 188: 353-361.Google Scholar
  22. Vincent, A.C.J. & L.M. Sadler. 1995. Faithful pair bonds in wild seahorses, Hippocampus whitei. Anim. Behav. 50: 1557-1569.Google Scholar
  23. Vincent, A.C.J., A. Berglund & I. Ahnesjo. 1995. Reproductive ecology of five pipefish species in one eelgrass meadow. Environ. Biol. Fish. 44: 347-361.Google Scholar
  24. Woods, C.M.C. 2000. Improving Initial survival in cultured seahorses, Hippocampus abdominalis Leeson, 1827 (Teleostei: Syngnathidae). Aquaculture 190: 377-388.Google Scholar
  25. Woods, C.M.C. & K.M. Martin-Smith (in press). Visible implant fluorescent elastomer tagging of the big-bellied seahorse, Hippocampus abdominalis. Fisheries Research.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Jaime Sanchez-Camara
    • 1
  • David J. Booth
    • 2
  1. 1.Department of Animal Biology (Invertebrates), Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
  2. 2.Department of Environmental SciencesUniversity of TechnologyGore HillAustralia

Personalised recommendations