Environmental and Resource Economics

, Volume 26, Issue 4, pp 527–557

Scale and Scaling in Ecological and Economic Systems

  • Jérôme Chave
  • Simon Levin


We review various aspects of the notion ofscale applied to natural systems, in particularcomplex adaptive systems. We argue that scalingissues are not only crucial from the standpointof basic science, but also in many appliedissues, and discuss tools for detecting anddealing with multiple scales, both spatial andtemporal. We also suggest that the techniquesof statistical mechanics, which have beensuccessful in describing many emergent patternsin physical systems, can also prove useful inthe study of complex adaptive systems.

criticality ecology economy scale statistical mechanics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amaral, L., S. Buldyrev, S. Havlin, H. Leschhon, P. Maas, H. E. Stanley and M. Stanley (1997), ‘Scaling Behavior in Economics. I. Empirical Results for Company Growth’, Journal dePhysique 7, 621–633.Google Scholar
  2. Andow, D. A., P. M. Kareiva, S. A. Levin and A. Okubo (1990), ‘Spread of Invading Organisms’, Landscape Ecology 4, 177–188.Google Scholar
  3. Arnol'd., V. I. (1986), Catastrophe Theory. Berlin: Springer-Verlag, 108 pp.Google Scholar
  4. Arrhenius, O. (1921), ‘Species and Area’, Journal of Ecology 9, 95–99.Google Scholar
  5. Arrow, K., G. Daily, P. Dasgupta, S. Levin, K.-G. Maler, E. Maskin, D. Starrett, T. Sterner and T. Toetenberg (2000), ‘Managing Ecosystem Resources’, Environmental Science and Technology 34, 1401–1406. Website http://dx.doi.org/10.1021/ES990672T.Google Scholar
  6. Bak, P. and K. Sneppen (1993), ‘Punctuated Equilibrium and Criticality in a Simple Model of Evolution’, Physical Review Letters 71, 4083–4086.Google Scholar
  7. Bak, P., C. Tang and K. Wiesenfeld (1988), ‘Self-organized Criticality’, Physical Review A 38, 364–374.Google Scholar
  8. Barabási, A.-L., S. V. Buldyrev, H. E. Stanley and B. Suki (1996), ‘Avalanches in the Lung: A Statistical Mechanical Model’, Physical Review Letters 76, 2192–2195.Google Scholar
  9. Batchelor, G. K. (1953). The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
  10. Binney, J. J., N. J. Dowrick, A. J. Fisher and M. E. J. Newman (1992), The Theory of Critical Phenomena-An Introduction to the Renormalization Group. Oxford: Oxford Science Publications, Clarendon Press, 464 pp.Google Scholar
  11. Bogoliubov, N. N. (1946), Studies in Statistical Mechanics, in J. de Boer and G. E. Uhlenbeck, eds. Amsterdam: North-Holland Publishing Company.Google Scholar
  12. Bogoliubov, N. N. and D. V. Shirkov (1959), Introduction to the Theory of Quantized Fields. New York: Interscience Publishers, 720 pp.Google Scholar
  13. Bouchaud, J.-P. and M. Potters (2000), Theory of Financial Risks. Cambridge University Press.Google Scholar
  14. Broadbent, S. R. and J. M. Hammersley (1957), ‘Percolation Processes’, Proceedings of the Cambridge Philosophical Society 53, 629–645.CrossRefGoogle Scholar
  15. Brock (1999), ‘Scaling in Economics: A Reader's Guide’, Industrial and Corporate Change 8, 409–446.Google Scholar
  16. Brown, J. H. and M. V. Lomolino (1998), Biogeography. Sinauer: Sunderland Mass.Google Scholar
  17. Buttel, L., R. Durrett and S. Levin (2002), ‘Competition and Species Packing in Patchy Environments’, Theoretical Population Biology 61, 265–276.Google Scholar
  18. Calder III, W. A. (1984), Size, Function, and Life History. Cambridge Mass: Harvard University Press.Google Scholar
  19. Carpenter, S. R., D. Ludwig and W. A. Brock (1999), ‘Management of Eutrophication for Lakes Subject to Potentially Irreversible Change’, Ecological Applications 9, 751–771.Google Scholar
  20. Chave, J., M. Dubios and B. Riéra (2001), ‘Estimation of Biomass in a Neotropical Forest of French Guiana: Spatial and Temporal Variability’, Journal of Tropical Ecology 17, 79–96.Google Scholar
  21. Chave, J., H. Muller-Landau and S. Levin (2002), ‘Comparing Classical Community Models: Theoretical Consequences for Patterns of Diversity’, American Naturalist 159, 1–23.Google Scholar
  22. Clark, J. S., C. Fastie, G. Hurtt, S. T. Jackson, C. Johnson, G. King and M. Lewis (1998), ‘Reid's Paradox of Rapid Plant Migration’, BioScience 48, 13–24.Google Scholar
  23. Clark, J. S. (1998), ‘Why Trees Migrate So Fast: Confronting Theory with Dispersal Biology and the Paleorecord’, American Naturalist 152, 204–224.Google Scholar
  24. Connor, E. F. and E. D. McCoy (1979), ‘The Statistics and Biology of the Species-area Relationship’, American Naturalist 113, 791–833.Google Scholar
  25. Crawley, M. J. and J. E. Harral (2001), ‘Scale Dependence in Plant Biodiversity’, Science 291, 864–868.Google Scholar
  26. Durlauf, S. (1993), ‘Nonergodic Economic Growth’, Review of Economic Studies 60, 349–366.Google Scholar
  27. Durrett, R. and S. Levin (1994), ‘Stochastic Spatial Models: A User's Guide to Ecological Applications’, Philosophical Transactions of the Royal Society of London B 343, 329–350.Google Scholar
  28. Durrett, R. and S. A. Levin (1996), ‘Spatial Models for Species-area Curves’, Journal of Theoretical Biology 179, 119–127.Google Scholar
  29. Earn, D., S. Levin and P. Rohani (2000), ‘Coherence and Conservation’, Science 290, 1360–1363.Google Scholar
  30. Enquist, B. J., J. H. Brown and G. H. West (1998), ‘Allometric Scaling of Plant Energentics and Population Density’, Nature 395, 163–165.Google Scholar
  31. Ferziger, J. H. and H. G. Kaper (1972), Mathematical Theory of Transport Processes in Gas. Amsterdam, London: North-Holland Publishing Company, 579 pp.Google Scholar
  32. Fisher, F. M. and A. Ando (1971), ‘Two Theorems on “Ceteris Paribus” in the Analysis of Dynamic Systems’, in H.M. Blalock Jr., ed., Causal Models in the Social Sciences (pp. 190–199). Chicago: Aldine Publishing Co.Google Scholar
  33. Flierl, G., D. Grünbaum, S. Levin and D. Olson (1999), ‘From Individuals to Aggregations: The Interplay between Behavior and Physics’, Journal of Theoretical Biology 196, 397–454.Google Scholar
  34. Fortuin, C. M. and P. W. Kastelyn (1972), ‘On the Random Cluster Model, I. Introduction and Relation to Other Models’, Physica 57, 536–564.Google Scholar
  35. Fragoso, J. (1997), ‘Tapir-generated Seed Shadows: Scale-dependent Patchiness’, Journal of Ecology 85, 519–529.Google Scholar
  36. Frisch, U. (1995), Turbulence: The Legacy of A.N. Kolmogorov. Cambridge: Cambridge University Press, 296 pp.Google Scholar
  37. Gell-Mann, M. (1994), The Quark and the Jaguar. New York: Freeman and Co.Google Scholar
  38. Gentry, A. H. (1992), ‘Tropical Forest Diversity: Distributional Patterns and Their Conservational Significance’, Oikos 63, 19–28.Google Scholar
  39. Grassberger, P. and A. de la Torre (1979), Reggeon Field Theory (Schlogl's FirstModel) on a Lattice: Monte-Carlo Calculations of Critical Behaviour’, Annals of Physics 122, 373.Google Scholar
  40. Guckenheimer, J. (2000), Numerical computation of canards. Website http://www.cam.cornell.edu/ guckenheimer/timescale.html.Google Scholar
  41. Harris, T. E. (1974), ‘Contact Interactions on a Lattice’, Annals of Probability 2, 969.Google Scholar
  42. Harte, J., A. Kinzig and J. Green (1999), ‘Self-similarity in the Abundance of Species’, Science 284, 334–336.Google Scholar
  43. Hastings, H. M. and G. Sugihara (1993), Fractals. A User's Guide for the Natural Sciences. Oxford: Oxford Science Publications, Oxford University Press, 235 pp.Google Scholar
  44. Haury, L. R., J. A. McGowan and P. H. Wiebe (1978), ‘Patterns and Processes in the Time-space Scales of Plankton Distributions’, in J. H. Steele, ed., Spatial Pattern in Plankton Communities (pp. 277–327). New York, U.S.A.: Plenum.Google Scholar
  45. Hinrichsen, H. (2000), ‘Nonequilibrium Critical Phenomena and Phase Transitions into Absorbing States’, Advances of Physics 49, 815. Available online at http://xxx.lanl.gov (Los Alamos earchive), section Condensed Matter, number cond-mat/0001070, 153 pp.Google Scholar
  46. Horn, H. S. (2000), ‘Twigs, Trees, and the Dynamics of Carbon in the Landscape’, in J. H. Brown and G. B. West, eds., Scaling in Biology (pp. 199–220). Santa Fe Institute, Oxford University Press, 352 pp.Google Scholar
  47. Hubbell, S. P. (1997), ‘A Unified Theory of Biogeography and Relative Species Abundance and Its Application to Tropical Rain Forests and Coreal Reefs’, Coral Reefs 16, S9-S21.Google Scholar
  48. Ijiri, Y. (1971), ‘Fundamental Queries in Aggregation Theory’, Journal of the American Statistical Association 66, 766–782.Google Scholar
  49. Ijiri, Y. and H. Simon (1977), Skew Distributions and the Size of Business Firms. Amsterdam: North Holland.Google Scholar
  50. Iwasa, Y., S. A. Levin and V. Andreasen (1987), ‘Aggregation in Model Ecosystems. I. Perfect Aggregation’, Ecological Modelling 37, 287–302.Google Scholar
  51. Iwasa, Y., S. A. Levin and V. Andreasen (1989), ‘Aggregation inModel Ecosystems. II. Approximate Aggregation’, IMA Journal of Mathematics Applied in Medicine 6, 1–23.Google Scholar
  52. Jacob, F. (1977), ‘Evolution and Tinkering’, Science 196, 1161–1166.Google Scholar
  53. Kadanoff, L. P. (1966), ‘Scaling Laws for Ising Models near Tc’, Physics 2, 263.Google Scholar
  54. Kauffman, S. (1993), The Origins of Order. Oxford: Oxford University Press.Google Scholar
  55. Kesten, H. (1980), ‘The Critical Probability for Bond Percolation on the Square Lattice Equals 1/2’, Communications in Mathematical Physics 74, 41–59.Google Scholar
  56. Kinzig, A. P., S. A. Levin, J. Dushoff and S.W. Pacala (1999), ‘Limiting Similarity, Species Packing, and System Stability for Hierarchical Competition-colonization Models’, American Naturalist 153, 371–383.Google Scholar
  57. Kolmogorov, A. N. (1941), ‘The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Number’, Comptes Rendus Académie des Sciences URSS 30, 301.Google Scholar
  58. Levin, S. A. (1979), ‘Non-uniform Stable Solutions to Reaction-diffusion Equations: Applications to Ecological Pattern Formation’, in H. Haken, ed., Pattern Formation by Dynamic Systems and Pattern Recognition (pp. 210–222). Berlin: Springer-Verlag.Google Scholar
  59. Levin, S. A. and L. A. Segel (1985), ‘Pattern Generation in Space and Aspect’, SIAM Review 27, 45–67.Google Scholar
  60. Levin, S. A. (1991), ‘The Problem of Relevant Detail’, in S. Busenberg and M. Martelli, eds., Differential Equations. Models in Biology, Ecology, and Epidemiology (pp. 9–15). Springer Verlag.Google Scholar
  61. Levin, S. A. (1992), ‘The Problem of Pattern and Scale in Ecology’, Ecology 73, 1943–1967.Google Scholar
  62. Levin, S. A. (1993), ‘Concept of Scale at the Local Level’, in J. R. Ehlringer and C. B. Field, eds., Scaling Physiological Processes. Leaf to Globe (pp. 7–19). Academic Press, 388 pp.Google Scholar
  63. Levin, S. A. (2000), ‘Complex Adaptive Systems: Exploring the Known, the Unknown and the Unknowable’, in F. Browder, ed., Mathematical Challenges of the XXIth Century. American Mathematical Society, Providence RI.Google Scholar
  64. Levin, S. A., A. Morin and T. H. Powell (1989), ‘Patterns and Processes in the Distribution and Dynamics of Antartic Krill’, in Scientific Committee for the Conservation of Antarctic Marine Living Resources-Selected Scientific Papers, Part 1, SC-CAMLR-SSp/5 (pp. 281–299). Australia: Hobart, Tasmania.Google Scholar
  65. Levin, S. A. and S. W. Pacala (1997), ‘Theories of Simplification and Scaling of Spatially Distributed Processes’, in D. Tilman and P. Kareiva, eds., Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions (pp. 271–296). Princeton, NJ: Princeton University Press.Google Scholar
  66. Levin, S. A. (1999), Fragile Dominion. Massachussets: Helix Books, Perseus Reading.Google Scholar
  67. Levins, R. (1968), Evolution in Changing Environments. Princeton, NJ: Princeton University Press.Google Scholar
  68. Li, G. and H. Rabitz (1991a), ‘A General Lumping Analysis of a Reaction System Coupled with Diffusion’, Chemical Engineering Science 46, 2041.Google Scholar
  69. Li, G. and H. Rabitz (1991b), ‘A General Analysis of Lumping’, in G. Astarita and S. I. Sandler, eds., Chemical Kinetics, in Kinetic and Thermodynamic Lumping of Multicomponent Mixtures (pp. 49–62). Amsterdam: Elsevier Science Publishers B.V.Google Scholar
  70. Lin, C. C. and L. A. Segel (1974), Mathematics Applied to Deterministic Problems in the Natural Sciences. New York: Macmillan.Google Scholar
  71. Ludwig, D. and C. J. Walters (1985), ‘Are Age-structured Models Appropriate for Catch-effort Data?’, Canadian Journal of Fish Aquatic Science 42, 1066–1072.CrossRefGoogle Scholar
  72. Ludwig, D., D. D. Jones and C. S. Holling (1978), ‘Qualitative Analysis of Insect Outbreak Systems: The Spruce Budworm and Forest’, Journal of Animal Ecology 47, 315–332.Google Scholar
  73. MacAuley, F. R. (1922), ‘Pareto's Laws and the General Problem of Mathematically Describing the Frequency of Income’, Income in the United States: Its Amount ands Distribution 1909–1919. New York: National Bureau of Economic Research.Google Scholar
  74. Major, J. Endemism (a botanical perspective), In A. A. Myers and P. S. Giller, eds., Analytical Biogeography-An Integrated Approach to the Study of Animal and Plant Distributions (pp. 117–146). London: Chapman and Hall.Google Scholar
  75. Makse, H. A., S. Havlin and H. E. Stanley (1995), ‘Modelling Urban Growth Patterns’, Nature 377, 608–612.Google Scholar
  76. Malamud, B. D., G. Morein and D. L. Turcotte (1998), ‘Forest Fires: An Example of Self-organized Critical Behavior’, Science 281, 1840–1842.Google Scholar
  77. Mandelbrot, B. B. (1963), ‘New Methods in Statistical Economics’, Journal of Political Economy 71, 421–440.Google Scholar
  78. Mandelbrot, B. B. (1975), Les Objets Fractals. Forme, Hasard et Dimension. Flammarion, Paris: Nouvelle Bibliothèque Scientifique, 190 pp.Google Scholar
  79. Mandelbrot, B. B. (1997), Fractals and Scaling in Finance. Springer-Verlag.Google Scholar
  80. May, R. M. (1974), ‘Biological Populations with Non-overlapping Generations: Stable Points, Stable Cycles, and Chaos’, Journal of Theoretical Biology 49, 511–524.Google Scholar
  81. May, R. M. and P. F. Stumpf (2000), ‘Species-area Relationships for Tropical Forests’, Science 290, 2084–2086.Google Scholar
  82. McMahon, T. A. (1975), ‘The Mechanical Design of Trees’, Scientific American 233, 93–102.CrossRefGoogle Scholar
  83. Mills, T. C. (1999), The Econometric Modelling of Financial Time Series. Cambridge University Press, 372 pp.Google Scholar
  84. Mollison, D. and S. A. Levin (1995), ‘Spatial Dynamics of Parasitism’, in B. T. Greenfell and A. P. Dobson, eds., Ecology of Infectious Diseases in Natural Populations (pp. 384–398). Cambridge, UK: Cambridge University Press.Google Scholar
  85. Nathan, R., U. N. Safriel, I. Noy-Meir and G. Schiller (2000), ‘Spatiotemporal Variation in Seed Dispersal and Recruitment near and Far From Pinus Halepensis Trees’, Ecology 81, 2156–2161.Google Scholar
  86. Nathan, R. (2001), ‘Dispersal Biogeography’, in S. Levin, ed., Encyclopedia of Biodiversity (pp. 127–152). Academic Press.Google Scholar
  87. Niklas, K. (1992), Plant Biomechanics: An Engineering Approach to Plant Form and Function. Chicago and London: University of Chicago Press, 607 pp.Google Scholar
  88. O'Brien, S. T., S. P. Hubbell, P. Spiro, R. Condit and R. B. Foster (1995), ‘Diameter, Height, Crown and Age Relationships in Eight Neotropical Tree Species’, Ecology 76, 1926–1939.Google Scholar
  89. Okubo, A. and S. A. Levin (1989), ‘A Theoretical Framework for Data Analysis of Wind Dispersal of Seeds and Pollen. Ecology 70, 329–338.Google Scholar
  90. Pareto, V. (1896), Cours d'Economie Politique. Reprinted in Pareto. Oeuvres Complètes. Droz, Geneva, 1965.Google Scholar
  91. Peters, R. H. (1983), The Ecological Implications of Body Size. Cambridge: Cambridge University Press, 324 pp.Google Scholar
  92. Pitman N. C. A., J. Terborgh, M. R. Silman and P. V. Nuñez (1999), ‘Tree Species Distribution in an Upper Amazonian Forest’, Ecology 80, 2651–2661.Google Scholar
  93. Plotkin J. B., M. D. Potts, D. W. Yu, S. Bunyavejchewin, R. Condit, R. Foster, S. Hubbell, J. LaFrankie, N. Manokaran, L. Hua Seng, R. Sukumar, M. A. Nowak and P. S. Ashton (2000), ‘Predicting Species Diversity in Tropical Forests’, Proceedings of the National Academy of Sciences U.S.A. 97, 10850–10854.Google Scholar
  94. Plotkin, J. B., J. Chave and P. S. Ashton (2002), ‘Cluster Analysis of Spatial Patterns in Malaysian Tree Species’, American Naturalist 60, 629–644.Google Scholar
  95. Prance, G. T. (1973), ‘Phytogeographic Support for the Theory of Pleistocene Forest Refuges in the Amazon Basin, Based on Evidence from Distribution Patterns in Caryocaraceae, Chrysobalanaceae, Dichapetalaceae and Lecythidaceae’, Acta Amazônica 3, 5–28.Google Scholar
  96. Prance, G. T. (1978), ‘Floristic Inventory of the Tropics: Where Do We Stand?’, Annals of the Missouri Botanical Garden 64, 659–684.Google Scholar
  97. Prance, G. T. (1994), ‘A Comparison of the Efficacy of Higher Taxa and Species Numbers in the Assessment of Biodiversity in the Tropics’, Philosophical Transactions of the Royal Society of London B 345, 89–99.Google Scholar
  98. Reynolds, P. J., W. Klein and H. E. Stanley (1977), ‘A Real-space Renormalization Group for Site and Bond Percolation’, Journal of Physics C 10, L167.Google Scholar
  99. Rodríguez-Iturbe, I. and A. Rinaldo (1997), Fractal River Basins. Chance and Self-Organization. Cambridge: Cambridge University Press, 547 pp.Google Scholar
  100. Schmidt-Nielsen, K. (1984), Scaling. Why is Animal Size so Important? Cambridge: Cambridge University Press, 241 pp.Google Scholar
  101. Segel, L. A. and S. A. Levin (1976), ‘Applications of Nonlinear Stability Theory to the Study of the Effects of Diffusion on Predator Prey Interactions’, in R. A. Piccirelli, ed., Topics in Statistical Mechanics and Biophysics: A Memorial to Julius L. Jackson. AIP New York.Google Scholar
  102. Shinozaki, K., K. Yoda, K. Hozumi and T. Kira (1964), ‘A Quantitative Analysis of Plant Form-The Pipe Model Theory I. Basic Analyses’, Japanese Journal of Ecology 14, 97–105.Google Scholar
  103. Simon, H. A. and A. Ando (1961), ‘Aggregation of Variables in Dynamic Systems’, Econometrica 29, 111–138.Google Scholar
  104. Skellam, J. G. (1951), ‘Random Dispersal in Theoretical Populations’, Biometrika 38, 196–218.Google Scholar
  105. Sornette, A. and D. Sornette (1989), ‘Self-organized Criticality and Earthquakes’, Europhysics Letters 9, 197–202.Google Scholar
  106. Stanley, H. E. (1971), Introduction to Phase Transitions and Critical Phenomena. Oxford: Oxford Science Publications, Clarendon Press.Google Scholar
  107. Stull, R. B. (1988), An Introduction to Boundary Layer Meteorology. Dordrecht, Boston, London: Atmospheric Sciences Library, Kluwer Academic Publishers, 670 pp.Google Scholar
  108. Thom, R. (1983), Mathematical Models of Morphogenesis. New York: Halsted Press, 305 pp.Google Scholar
  109. Turing, A. (1952), ‘The Chemical Basis of Morphogenesis’, Philosophical Transactions of the Royal Society of London B 237, 37–72.Google Scholar
  110. Tykhonov, A. N. (1952), Systems of Differential Equations Containing Small Parameters Multiplying the Derivatives. Mat.Google Scholar
  111. Vogel, S. (1994), Life in Moving Fluids. Princeton, NJ: Princeton University Press, 467 pp.Google Scholar
  112. West, G. B., J. H. Brown and B. J. Enquist (1997), ‘A General Model for the Origin of Allometric Scaling Laws in Biology’, Science 276, 122–126.Google Scholar
  113. Whittaker, R. J., M. B. Bush and K. Richards (1989), ‘Plant Recolonization and Vegetation Succession on the Krakatau Islands, Indonesia’, Ecological Monographs 59, 59–123.Google Scholar
  114. Williams, C. B. (1964), Patterns in the Balance of Nature and Related Problems in Quantitative Ecology. New York: Academic Press.Google Scholar
  115. Wilson, K. G. and J. Kogut (1974), ‘The Renormalization Group and the ɛ-expansion’, Physics Reports 12C, 75–200.Google Scholar
  116. Yeomans, J. M. (1992), Statistical Mechanics of Phase Transitions. Oxford: Oxford Science Publications, Clarendon Press, 153 pp.Google Scholar
  117. Zipf, G. K. (1949), Human Behavior and the Principle of Least Effort. Addison Wesley.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Jérôme Chave
    • 1
  • Simon Levin
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonU.S.A.
  2. 2.Laboratoire Evolution et Diversité Biologique, CNRS UMR 5174ToulouseFrance

Personalised recommendations