Advertisement

Differential Equations

, Volume 40, Issue 7, pp 971–983 | Cite as

A Study of Variable Step Iterative Methods for Variational Inequalities of the Second Kind

  • I. B. Badriev
  • O. A. Zadvornov
  • A. D. Lyashko
Article

Keywords

Differential Equation Partial Differential Equation Ordinary Differential Equation Functional Equation Variational Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Lions, J.-L., Quelques méthodes de résolution des problémes aux limites nonlineaires, Paris: Dunod,1969. Translated under the title Nekotorye metody resheniya nelineinykh kraevykh zadach, Moscow:Mir, 1972.Google Scholar
  2. 2.
    Gol'shtein, E.G. and Tret'yakov, N.V., Modifitsirovannye funktsii Lagranzha(Modified Lagrange Functions), Moscow, 1989.Google Scholar
  3. 3.
    Duvaut, G. and Lions, J.-L., Inequalities in Mechanics and Physics, Berlin, 1976. Translated under thetitle Neravenstva v mekhanike i fizike, Moscow, 1980.Google Scholar
  4. 4.
    Panagiotopoulos, P., Inequality Problems in Mechanics and Applications. Convex and NonconvexEnergy Functions, Boston: Birkh.auser, 1985. Translated under the title Neravenstva v mekhanike iikh prilozheniya. Vypuklye i nevypuklye funktsii energii, Moscow: Mir, 1989.Google Scholar
  5. 5.
    Ekeland, I. and Temam, R., Convex Analysis and Variational Problems, Amsterdam: North-Holland,1976. Translated under the title Vypuklyi analiz i variatsionnye problemy, Moscow: Mir, 1979.Google Scholar
  6. 6.
    Badriev, I.B. and Shagidullin, R.R., Izv. Vyssh. Uchebn. Zaved Matematika, 1992, no. 1, pp. 8–16.Google Scholar
  7. 7.
    Lapin, A.V., Zh. Vychislit. Mat. Mat. Fiz., 1979, vol. 19, no. 3, pp. 689–700.Google Scholar
  8. 8.
    Glowinski, R., Lions, J.-L., and Tremolieres, R., Analyse numériquedes inéquations variationnelles.vols. 1, 2, Dunod: Paris, 1976. Translated under the title Chislennoe issledovanie variatsionnykh nera-venstv, Moscow: Mir, 1979.Google Scholar
  9. 9.
    Badriev, I.B., Zadvornov, O.A., and Ismagilov, L.N., Computational Methods in Applied Mathematics,2003, vol. 3, no. 2, pp. 223–234.Google Scholar
  10. 10.
    Badriev, I.B. and Zadvornov, O.A., Differents. Uravn., 2003, vol. 39, no. 7, pp. 888–895.Google Scholar
  11. 11.
    Badriev, I.B. and Zadvornov, O.A., Izv. Vyssh. Uchebn. Zaved.Matematika, 2003, no. 1, pp. 20–28.Google Scholar
  12. 12.
    Badriev, I.B., Zadvornov, O.A., and Ismagilov, L.N., in Issledovaniya po prikladnoi matematike i infor-matike (Investigations in Applied Mathematics and Computer Science), Kazan, 2003, issue 24, pp. 13–26.Google Scholar
  13. 13.
    Vasil'ev, F.P., Chislennye metody resheniya ekstremal'nykh zadach (Numerical Methods for SolvingExtremal Problems), Moscow, 1988.Google Scholar
  14. 14.
    Vainberg, M.M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii(Variational Method and the Method of Monotone Operators in the Theory of Nonlinear Equations),Moscow, 1972.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • I. B. Badriev
    • 1
  • O. A. Zadvornov
    • 1
  • A. D. Lyashko
    • 1
  1. 1.Kazan State UniversityKazanRussia

Personalised recommendations