Designs, Codes and Cryptography

, Volume 32, Issue 1–3, pp 369–379 | Cite as

Parallel Symmetric Attack on NTRU using Non-Deterministic Lattice Reduction

  • Tanya E. Seidel
  • Daniel Socek
  • Michal Sramka


Currently, the most efficient passive attack on the NTRU public-key cryptosystem, proposed by Coppersmith and Shamir [1], is based on finding a short enough vector in an integral lattice. An NTRU lattice possesses a cyclic automorphism group whose symmetry may be exploited. We have designed methods for reducing bases of NTRU integral lattices based on this symmetry. In addition to these methods, we use hill-descending techniques to combine new and proposed lattice-reduction algorithms. This approach includes deterministic and non-deterministic components which may be efficiently parallelized.

NTRU lattice reduction hill-descending 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Coppersmith and A. Shamir, Lattice attacks on NTRU, Advances in Cryptology-EUROCRYPT '97, (Walter Fumy, ed.), Springer LNCS, Vol. 1233 (1997) pp. 52–61.Google Scholar
  2. 2.
    M. Grötschel, L. Lovász and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer-Verlag, Vol. 2 (1991) pp. 139–156.Google Scholar
  3. 3.
    J. Hoffstein, J. Pipher and J. H. Silverman, NTRU: A Ring-Based Public Key Cryptosystem, Preprint (1998).Google Scholar
  4. 4.
    J. Hoffstein and J. Silverman, Optimizations for NTRU. In Proceedings of Public Key Cryptography and Computational Number Theory, de Gruyter, Warsaw (September, 2000).Google Scholar
  5. 5.
    N. Howgrave-Graham, P. Nguyen, D. Pointcheval, J. Proos, J. H. Silverman, A. Singer and W. Whyte, The impact of decryption failures on the security of NTRU encryption. In Proceedings of Crypto 2003, Santa Barbara, USA (2003).Google Scholar
  6. 6.
    A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovàsz, Factoring polynomials with rational coefficients, Mathematische Annalen, Vol. 261 (1982) pp. 515–534.Google Scholar
  7. 7.
    J. A. Proos, Imperfect Decryption and Partial Information Attacks in Cryptography, Ph.D. Thesis, University of Waterloo, Ontario, Canada (2003).Google Scholar
  8. 8.
    C. P. Schnorr, Block Korkin-Zolotarev Bases and Successive Minima, Technical Report TR-92–063 (1992).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Tanya E. Seidel
    • 1
  • Daniel Socek
    • 2
  • Michal Sramka
    • 1
  1. 1.Department of Mathematical SciencesFlorida Atlantic UniversityBoca Raton
  2. 2.Department of Computer Science and EngineeringFlorida Atlantic UniversityBoca Raton

Personalised recommendations