Digestive Diseases and Sciences

, Volume 49, Issue 9, pp 1359–1377 | Cite as

REVIEW: Ischemia—Reperfusion Injury of the Intestine and Protective Strategies Against Injury

  • Ismail Hameed Mallick
  • Wenxuan Yang
  • Marc C. Winslet
  • Alexander M. Seifalian


Ischemia—Reperfusion injury of the intestine is a significant problem in abdominal aortic aneurysm surgery, small bowel transplantation, cardiopulmonary bypass, strangulated hernias, and neonatal necrotizing enterocolitis. It can also occur as a consequence of collapse of systemic circulation, as in hypovolemic and septic shock. It is associated with a high morbidity and mortality. This article is a comprehensive review of the current status of the molecular biology and the strategies to prevent Ischemia—Reperfusion injury of the intestine. Various treatment modalities have successfully been applied to attenuate reperfusion injury in animal models of reperfusion injury of the intestine. Ischemic preconditioning has been found to be the most promising strategy against reperfusion injury during the last few years, appearing to increase the tolerance of the intestine to reperfusion injury. Although ischemic preconditioning has been shown to be beneficial in the human heart and the liver, prospective controlled studies in humans involving ischemic preconditioning of the intestine are lacking. Research focused on the application of novel drugs that can mimic the effects of ischemic preconditioning to manipulate the cellular events during reperfusion injury of the intestine is required.

intestine ischemia intestinal transplantation reperfusion injury 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koike K, Moore FA, Moore EE, Read RA, Carl VS, Banerjee A: Gut ischemia mediates lung injury by a xanthine oxidase-dependent neutrophil mechanism. J Surg Res 54(5):469–473, 1993Google Scholar
  2. 2.
    Collard CD, Gelman S: Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology 94(6):1133–1138, 2001Google Scholar
  3. 3.
    Moore EE, Moore FA, Franciose RJ, Kim FJ, Biffl WL, Banerjee A: The postischemic gut serves as a priming bed for circulating neutrophils that provoke multiple organ failure. J Trauma 37(6):881–887, 1994Google Scholar
  4. 4.
    Swank GM, Deitch EA: Role of the gut in multiple organ failure: Bacterial translocation and permeability changes. World J Surg 20(4):411–417, 1996Google Scholar
  5. 5.
    Stallion A, Kou TD, Miller KA, Dahms BB, Dudgeon DL, Levine AD: IL-10 is not protective in intestinal ischemia reperfusion injury. J Surg Res 105(2):145–152, 2002Google Scholar
  6. 6.
    Granger DN, Hollwarth ME, Parks DA: Ischemia-reperfusion injury: Role of oxygen-derived free radicals. Acta Physiol Scand Suppl 548:47–63, 1986Google Scholar
  7. 7.
    Yamamoto S, Tanabe M, Wakabayashi G, Shimazu M, Matsumoto K, Kitajima M: The role of tumor necrosis factor-alpha and interleukin-1 beta in ischemia-reperfusion injury of the rat small intestine. J Surg Res 99(1):134–141, 2001Google Scholar
  8. 8.
    Kong SE, Blennerhassett LR, Heel KA, McCauley RD, Hall JC: Ischaemia-reperfusion injury to the intestine. Aust NZ J Surg 68(8):554–561, 1998Google Scholar
  9. 9.
    Takeyoshi I, Zhang S, Nakamura K, Ikoma A, Zhu Y, Starzl TE, Todo S: Effect of ischemia on the canine large bowel: Acomparison with the small intestine. J Surg Res 62(1):41–48, 1996Google Scholar
  10. 10.
    Hinnebusch BF, Ma Q, Henderson JW, Siddique A, Archer SY, Hodin RA: Enterocyte response to ischemia is dependent on differentiation state. J Gastrointest Surg 6(3):403–409, 2002Google Scholar
  11. 11.
    Molmenti EP, Ziambaras T, Perlmutter DH: Evidence for an acute phase response in human intestinal epithelial cells. J Biol Chem 268(19):14116–14124, 1993Google Scholar
  12. 12.
    Wang Q, Meyer TA, Boyce ST, Wang JJ, Sun X, Tiao G, Fischer JE, Hasselgren PO: Endotoxemia in mice stimulates production of complement C3 and serum amyloid A in mucosa of small intestine. Am J Physiol 275(5, Pt 2):R1584–R1592, 1998Google Scholar
  13. 13.
    Zamir O, Hasselgren PO, Higashiguchi T, Frederick JA, Fischer JE: Effect of sepsis or cytokine administration on release of gut peptides. Am J Surg 163(1):181–185, 1992Google Scholar
  14. 14.
    Mester MD, Tompkins MD, Gelfand MD, Dinarello MD: Intestinal production of interleukin-1[alpha] during endotoxemia in the mouse. J Surg Res 54(6):584–591, 1993Google Scholar
  15. 15.
    Meyer TA, Wang J, Tiao GM, Ogle CK, Fischer JE, Hasselgren PO: Sepsis and endotoxemia stimulate intestinal interleukin-6 production. Surgery 118(2):336–342, 1995Google Scholar
  16. 16.
    Jassem W, Fuggle SV, Rela M, Koo DD, Heaton ND: The role of mitochondria in ischemia/reperfusion injury. Transplantation 73(4):493–499, 2002Google Scholar
  17. 17.
    Carden DL and Granger DN: Pathophysiology of ischaemia-reperfusion injury. J Pathol 190(3):255–266, 2000Google Scholar
  18. 18.
    Ogle CK, Mao JX, Wu JZ, Ogle JD, Alexander JW: The 1994 Lindberg Award. The production of tumor necrosis factor, interleukin-1, interleukin-6, and prostaglandin E2 by isolated enterocytes and gut macrophages: Effect of lipopolysaccharide and thermal injury. J Burn Care Rehabil 15(6):470–477, 1994Google Scholar
  19. 19.
    Kuenzler KA, Pearson PY, Schwartz MZ: Interleukin-11 enhances intestinal absorptive function after ischemia-reperfusion injury. J Pediatr Surg 37(3):457–459, 2002Google Scholar
  20. 20.
    Prasad R, Alavi K, Schwartz MZ: GLP-2alpha accelerates recovery of mucosal absorptive function after intestinal ischemia/reperfusion. J Pediatr Surg 36(4):570–572, 2001Google Scholar
  21. 21.
    Rajeevprasad R, Alavi K, Schwartz MZ: Glucagonlike peptide-2 analogue enhances intestinal mucosal mass and absorptive function after ischemia-reperfusion injury. J Pediatr Surg 35(11):1537–1539, 2000Google Scholar
  22. 22.
    Scolapio JS, Fleming CR: Short bowel syndrome. Gastroenterol Clin North Am 27(2):467–479, viii, 1998Google Scholar
  23. 23.
    Sileri P, Morini S, Schena S, Rastellini C, Abcarian H, Benedetti E, Cicalese L: Intestinal ischemia/reperfusion injury produces chronic abnormalities of absorptive function. Transplant Proc 34(3):984, 2002Google Scholar
  24. 24.
    Van Leeuwen PA, Boermeester MA, Houdijk AP, Ferwerda CC, Cuesta MA, Meyer S, Wesdorp RI: Clinical significance of translocation. Gut 35(Suppl 1):S28–S34, 1994Google Scholar
  25. 25.
    Cicalese L, Sileri P, Green M, Abu-Elmagd K, Kocoshis S, Reyes J: Bacterial translocation in clinical intestinal transplantation. Transplantation 71(10):1414–1417, 2001Google Scholar
  26. 26.
    Aksoyek S, Cinel I, Avlan D, Cinel L, Ozturk C, Gurbuz P, Nayci A, Oral U: Intestinal ischemic preconditioning protects the intestine and reduces bacterial translocation. Shock 18(5):476–480, 2002Google Scholar
  27. 27.
    Iijima S, Shou J, Naama H, Calvano SE, Daly JM: Beneficial effect of enteral glycine in intestinal ischemia/reperfusion injury. J Gastrointest Surg 1(1):53–60, 1997Google Scholar
  28. 28.
    Xia G, Martin AE, Michalsky MP, Besner GE: Heparin-binding EGF-like growth factor preserves crypt cell proliferation and decreases bacterial translocation after intestinal ischemia/reperfusion injury. J Pediatr Surg 37(7):1081 [Discussion], 2002Google Scholar
  29. 29.
    Berg RD: Bacterial translocation from the gastrointestinal tract. Adv Exp Med Biol 473:11–30, 1999Google Scholar
  30. 30.
    Ceppa EP, Fuh KC, Bulkley GB: Mesenteric hemodynamic response to circulatory shock. Curr Opin Crit Care 9(2):127–132, 2003Google Scholar
  31. 31.
    Koksoy C, Kuzu MA, Kuzu I, Ergun H, Gurhan I: Role of tumour necrosis factor in lung injury caused by intestinal ischaemia-reperfusion. Br J Surg 88(3):464–468, 2001Google Scholar
  32. 32.
    Xiao F, Eppihimer MJ, Young JA, Nguyen K, Carden DL: Lung neutrophil retention and injury after intestinal ischemia/reperfusion. Microcirculation 4(3):359–367, 1997Google Scholar
  33. 33.
    Marshall JC: The gut as a potential trigger of exercise-induced inflammatory responses. Can J Physiol Pharmacol 76(5):479–484, 1998Google Scholar
  34. 34.
    Parks DA, Williams TK, Beckman JS: Conversion of xanthine dehydrogenase to oxidase in ischemic rat intestine: A reevaluation. Am J Physiol 254(5, Pt 1):G768–G774, 1988Google Scholar
  35. 35.
    Meneshian A and Bulkley GB: The physiology of endothelial xanthine oxidase: From urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation 9(3):161–175, 2002Google Scholar
  36. 36.
    Younes M, Schoenberg MH, Jung H, Fredholm BB, Haglund U, Schildberg FW: Oxidative tissue damage following regional intestinal ischemia and reperfusion in the cat. Res Exp Med (Berl) 184(4):259–264, 1984Google Scholar
  37. 37.
    Harrison R: Structure and function of xanthine oxidoreductase: Where are we now? Free Radic Biol Med 33(6):774–797, 2002Google Scholar
  38. 38.
    Halliwell B, Gutteridge J: Free Radicals in Biology and Medicine, 3rd ed. New York: Oxford University Press, 1999Google Scholar
  39. 39.
    Ozel SK, Yuksel M, Haklar G, Durakbasa CU, Dagli TE, Aktan AO: Nitric oxide and endothelin relationship in intestinal ischemia/reperfusion injury (II). Prostaglandins Leukot Essent Fatty Acids 64(4–5):253–257, 2001Google Scholar
  40. 40.
    Inoue A, Yanagisawa M, Kimura S, Kasuya Y, Miyauchi T, Goto K, Masaki T: The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci USA 86(8):2863–2867, 1989Google Scholar
  41. 41.
    Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T: A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332(6163):411–415, 1988Google Scholar
  42. 42.
    Clozel M, Gray GA, Breu V, Loffler BM, Osterwalder R: The endothelin ETB receptor mediates both vasodilation and vasoconstriction in vivo. Biochem Biophys Res Commun 186(2):867–873, 1992Google Scholar
  43. 43.
    Anadol AZ, Bayram O, Dursun A, Ercan S: Role of endogenous endothelin peptides in intestinal ischemia-reperfusion injury in rats. Prostaglandins Leukot Essent Fatty Acids 59(4):279–283, 1998Google Scholar
  44. 44.
    Andrasi TB, Kekesi V, Blazovics A, Dobi I, Szabo G, Juhasz-Nagy A: ET(A) receptor blockade protects the small intestine against is-chaemia/reperfusion injury in dogs via an enhancement of antioxidant defences. Clin Sci (Lond) 103 (Suppl 48):59S–63S, 2002Google Scholar
  45. 45.
    Buyukgebiz O, Aktan AO, Yegen C, Yalcin AS, Haklar G, Yalin R, Ercan ZS: Captopril increases endothelin serum concentrations and preserves intestinal mucosa after mesenteric ischemia-reperfusion injury. Res Exp Med (Berl) 194(6):339–348, 1994Google Scholar
  46. 46.
    Oktar BK, Gulpinar MA, Bozkurt A, Ghandour S, Cetinel S, Moini H, Yegen BC, Bilsel S, Granger DN, Kurtel H: Endothelin receptor blockers reduce I/R-induced intestinal mucosal injury: Role of blood flow. Am J Physiol Gastrointest Liver Physiol 282(4):G647–G655, 2002Google Scholar
  47. 47.
    Wolfard A, Szalay L, Kaszaki 1J, Sahin-Toth G, Vangel R, Balogh A, Boros M: Dynamic in vivo observation of villus microcirculation during small bowel autotransplantation: Effects of endothelin—A receptor inhibition. Transplantation 73(9):1511–1513, 2002Google Scholar
  48. 48.
    Oktar BK, Coskun T, Bozkurt A, Yegen BC, Yuksel M, Haklar G, Bilsel S, Aksungar FB, Cetinel U, Granger DN, Kurtel H: Endothelin-1-induced PMN infiltration and mucosal dysfunction in the rat small intestine. Am J Physiol Gastrointest Liver Physiol 279(3):G483–G491, 2000Google Scholar
  49. 49.
    Tsuruma T, Yagihashi A, Matsuno T, Zou XM, Asanuma K, Sasaki K, Hirata K: The heat-shock protein 70 family reduces ischemia/reperfusion injury in small intestine. Transplant Proc 28(5):2629–2630, 1996Google Scholar
  50. 50.
    Hotchkiss R, Nunnally I, Lindquist S, Taulien J, Perdrizet G, Karl I: Hyperthermia protects mice against the lethal effects of endotoxin. Am J Physiol 265(6, Pt 2):R1447–R1457, 1993Google Scholar
  51. 51.
    Ryan AJ, Flanagan SW, Moseley PL, Gisolfi CV: Acute heat stress protects rats against endotoxin shock. J Appl Physiol 73(4):1517–1522, 1992Google Scholar
  52. 52.
    Fleming SD, Starnes BW, Kiang JG, Stojadinovic A, Tsokos GC, Shea-Donohue T: Heat stress protection against mesenteric I/R-induced alterations in intestinal mucosa in rats. J Appl Physiol 92(6):2600–2607, 2002Google Scholar
  53. 53.
    Stojadinovic A, Kiang J, Smallridge R, Galloway R, Shea-Donohue T: Induction of heat-shock protein 72 protects against ischemia/reperfusion in rat small intestine. Gastroenterology 109(2):505–515, 1995Google Scholar
  54. 54.
    Tsuruma T, Yagihashi A, Watanabe N, Yajima T, Kameshima H, Araya J, Hirata K: Heat-shock protein-73 protects against small intestinal warm ischemia-reperfusion injury in the rat. Surgery 125(4):385–395, 1999Google Scholar
  55. 55.
    Hayward R and Lefer AM: Time course of endothelial-neutrophil interaction in splanchnic artery ischemia-reperfusion. AmJ Physiol 275(6, Pt 2):H2080–H2086, 1998Google Scholar
  56. 56.
    Hierholzer C, Kalff JC, Audolfsson G, Billiar TR, Tweardy DJ, Bauer AJ: Molecular and functional contractile sequelae of rat intestinal ischemia/reperfusion injury. Transplantation 68(9):1244–1254, 1999Google Scholar
  57. 57.
    Cooper D, Russell J, Chitman KD, Williams MC, Wolf RE, Granger DN: Leukocyte dependence of platelet adhesion in postcapillary venules. Am J Physiol Heart Circ Physiol 286(5):H1895–H1900, 2004Google Scholar
  58. 58.
    Mbachu EM, Klein LV, Rubin BB, Lindsay TF: A monoclonal antibody against cytokine-induced neutrophil chemoattractant attenuates injury in the small intestine in a model of ruptured abdominal aortic aneurysm. J Vasc Surg 39(5):1104–1111, 2004Google Scholar
  59. 59.
    Massberg S, Gonzalez AP, Leiderer R, Menger MD, Messmer K: In vivo assessment of the influence of cold preservation time on microvascular reperfusion injury after experimental small bowel transplantation. Br J Surg 85(1):127–133, 1998Google Scholar
  60. 60.
    Sisley AC, Desai T, Harig JM, Gewertz BL: Neutrophil depletion attenuates human intestinal reperfusion injury. J Surg Res 57(1):192–196, 1994Google Scholar
  61. 61.
    Granger DN, Korthuis RJ: Physiologic mechanisms of postischemic tissue injury. Annu Rev Physiol 57:311–332, 1995Google Scholar
  62. 62.
    Naito Y, Takagi T, Uchiyama K, Handa O, Tomatsuri N, Imamoto E, Kokura S, Ichikawa H, Yoshida N, Yoshikawa T: Suppression of intestinal ischemia-reperfusion injury by a specific peroxisome proliferator-activated receptor-gamma ligand, pioglitazone, in rats. Redox Rep 7(5):294–299, 2002Google Scholar
  63. 63.
    Grisham MB, Granger DN, Lefer DJ: Modulation of leukocyte-endothelial interactions by reactive metabolites of oxygen and nitrogen: Relevance to ischemic heart disease. Free Radic Biol Med 25(4–5):404–433, 1998Google Scholar
  64. 64.
    Granger DN: Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. Am J Physiol 255(6, Pt 2):H1269–H1275, 1988Google Scholar
  65. 65.
    Panes J, Perry M, Granger DN: Leukocyte-endothelial cell adhesion: Avenues for therapeutic intervention. Br J Pharmacol 126(3):537–550, 1999Google Scholar
  66. 66.
    Riaz AA, Wan MX, Schaefer T, Schramm R, Ekberg H, Menger MD, Jeppsson B, Thorlacius H: Fundamental and distinct roles of P-selectin and LFA-1 in ischemia/reperfusion-induced leukocyte-endothelium interactions in the mouse colon. Ann Surg 236(6):777–784, 2002Google Scholar
  67. 67.
    Carden DL, Smith JK, Korthuis RJ: Neutrophil-mediated microvascular dysfunction in postischemic canine skeletal muscle. Role of granulocyte adherence. Circ Res 66(5):1436–1444, 1990Google Scholar
  68. 68.
    Weiss SJ: Tissue destruction by neutrophils. N Engl J Med 320(6):365–376, 1989Google Scholar
  69. 69.
    Bagge U, Amundson B, Lauritzen C: White blood cell deformability and plugging of skeletal muscle capillaries in hemorrhagic shock. Acta Physiol Scand 108(2):159–163, 1980Google Scholar
  70. 70.
    Nalini S, Mathan MM, Balasubramanian KA: Oxygen free radical induced damage during intestinal ischemia/reperfusion in normal and xanthine oxidase deficient rats. Mol Cell Biochem 124(1):59–66, 1993Google Scholar
  71. 71.
    Albrecht EW, Stegeman CA, Heeringa P, Henning RH, van Goor H: Protective role of endothelial nitric oxide synthase. J Pathol 199(1):8–17, 2003Google Scholar
  72. 72.
    Qu XW, Wang H, De Plaen IG, Rozenfeld RA, Hsueh W: Neuronal nitric oxide synthase (NOS) regulates the expression of inducible NOS in rat small intestine via modulation of nuclear factor kappa B. FASEB J 15(2):439–446, 2001Google Scholar
  73. 73.
    Hasan K, Heesen BJ, Corbett JA, McDaniel ML, Chang K, Allison W, Wolffenbuttel BH, Williamson JR, Tilton RG: Inhibition of nitric oxide formation by guanidines. Eur J Pharmacol 249(1):101–106, 1993Google Scholar
  74. 74.
    Naka M, Nanbu T, Kobayashi K, Kamanaka Y, Komeno M, Yanase R, Fukutomi T, Fujimura S, Seo HG, Fujiwara N, Ohuchida S, Suzuki K, Kondo K, Taniguchi N: A potent inhibitor of inducible nitric oxide synthase, ONO-1714, a cyclic amidine derivative. Biochem Biophys Res Commun 270(2):663–667, 2000Google Scholar
  75. 75.
    Salzman AL: Nitric oxide in the gut. New Horiz 3(2):352–364, 1995Google Scholar
  76. 76.
    Kubes P and McCafferty DM: Nitric oxide and intestinal inflammation. Am J Med 109(2):150–158, 2000Google Scholar
  77. 77.
    Suzuki Y, Deitch EA, Mishima S, Lu Q, Xu D: Inducible nitric oxide synthase gene knockout mice have increased resistance to gut injury and bacterial translocation after an intestinal ischemia-reperfusion injury. Crit Care Med 28(11):3692–3696, 2000Google Scholar
  78. 78.
    Cuzzocrea S, Zingarelli B, Caputi AP: Role of constitutive nitric oxide synthase and peroxynitrite production in a rat model of splanchnic artery occlusion shock. Life Sci 63(9):789–799, 1998Google Scholar
  79. 79.
    Wu B, Iwakiri R, Tsunada S, Utsumi H, Kojima M, Fujise T, Ootani A, Fujimoto K: iNOS enhances rat intestinal apoptosis after ischemia-reperfusion. Free Radic Biol Med 33(5):649–658, 2002Google Scholar
  80. 80.
    Virlos IT, Inglott FS, Williamson RC, Mathie RT: Differential expression of pulmonary nitric oxide synthase isoforms after intestinal ischemia-reperfusion. Hepatogastroenterology 50(49):31–36, 2003Google Scholar
  81. 81.
    Wink DA, Hanbauer I, Krishna MC, DeGraff W, Gamson J, Mitchell JB: Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci USA 90(21):9813–9817, 1993Google Scholar
  82. 82.
    Kosonen O, Kankaanranta H, Malo-Ranta U, Moilanen E: Nitric oxide-releasing compounds inhibit neutrophil adhesion to endothelial cells. Eur J Pharmacol 382(2):111–117, 1999Google Scholar
  83. 83.
    Gidday JM, Park TS, Shah AR, Gonzales ER: Modulation of basal and postischemic leukocyte-endothelial adherence by nitric oxide. Stroke 29(7):1423–1429, 1998Google Scholar
  84. 84.
    Guo JP, Murohara T, Buerke M, Scalia R, Lefer AM: Direct measurement of nitric oxide release from vascular endothelial cells. J Appl Physiol 81(2):774–779, 1996Google Scholar
  85. 85.
    Lefer AM, Lefer DJ: The role of nitric oxide and cell adhesion molecules on the microcirculation in ischaemia-reperfusion. Cardiovasc Res 32(4):743–751, 1996Google Scholar
  86. 86.
    Wink DA, Mitchell JB: Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25(4–5):434–456, 1998Google Scholar
  87. 87.
    Gauthier TW, Davenpeck KL, Lefer AM: Nitric oxide attenuates leukocyte-endothelial interaction via P-selectin in splanchnic ischemia-reperfusion. Am J Physiol 267(4, Pt 1):G562–G568, 1994Google Scholar
  88. 88.
    Ito K, Ozasa H, Kojima N, Miura M, Iwa T, Senoo H, Horikawa S: Pharmacological preconditioning protects lung injury induced by intestinal ischemia/reperfusion in rat. Shock 19(5):462–468, 2003Google Scholar
  89. 89.
    Attuwaybi BO, Kozar RA, Moore-Olufemi SD, Sato N, Hassoun HT, Weisbrodt NW, Moore FA: Heme oxygenase-1 induction by hemin protects against gut ischemia/reperfusion injury. J Surg Res 118(1):53–57, 2004Google Scholar
  90. 90.
    Nakao A, Kimizuka K, Stolz DB, Neto JS, Kaizu T, Choi AM, Uchiyama T, Zuckerbraun BS, Nalesnik MA, Otterbein LE, Murase N: Carbon monoxide inhalation protects rat intestinal grafts from ischemia/reperfusion injury. AmJ Pathol 163(4):1587–1598, 2003Google Scholar
  91. 91.
    Squiers EC, Bruch D, Buelow R, Tice DG: Pretreatment of small bowel isograft donors with cobalt-protoporphyrin decreases preservation injury. Transplant Proc 31(1–2):585–586, 1999Google Scholar
  92. 92.
    Choi AM, Alam J: Heme oxygenase-1: Function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol 15(1):9–19, 1996Google Scholar
  93. 93.
    Katori M, Busuttil RW, Kupiec-Weglinski JW: Heme oxygenase-1 system in organ transplantation. Transplantation 74(7):905–912, 2002Google Scholar
  94. 94.
    Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN: Bilirubin is an antioxidant of possible physiological importance. Science 235(4792):1043–1046, 1987Google Scholar
  95. 95.
    Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F, Eaton JW, Vercellotti GM: Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem 267(25):18148–18153, 1992Google Scholar
  96. 96.
    Willis D, Moore AR, Frederick R, Willoughby DA: Heme oxygenase: A novel target for the modulation of the inflammatory response. Nat Med 2(1):87–90, 1996Google Scholar
  97. 97.
    Vachharajani TJ, Work J, Issekutz AC, Granger DN: Heme oxygenase modulates selectin expression in different regional vascular beds. Am J Physiol Heart Circ Physiol 278(5):H1613–H1617, 2000Google Scholar
  98. 98.
    Coito AJ, Buelow R, Shen XD, Amersi F, Moore C, Volk HD, Busuttil RW, Kupiec-Weglinski JW: Heme oxygenase-1 gene transfer inhibits inducible nitric oxide synthase expression and protects genetically fat Zucker rat livers from ischemia-reperfusion injury. Transplantation 74(1):96–102, 2002Google Scholar
  99. 99.
    Ceran C, Sonmez K, Turkyllmaz Z, Demirogullarl B, Dursun A, Duzgun E, Basaklar AC, Kale N: Effect of bilirubin in ischemia/reperfusion injury on rat small intestine. J Pediatr Surg 36(12):1764–1767, 2001Google Scholar
  100. 100.
    Hammerman C, Goldschmidt D, Caplan MS, Kaplan M, Bromiker R, Eidelman AI, Gartner LM, Hochman A: Protective effect of bilirubin in ischemia-reperfusion injury in the rat intestine. J Pediatr Gastroenterol Nutr 35(3):344–349, 2002Google Scholar
  101. 101.
    Anaya-Prado R, Toledo-Pereyra LH, Lentsch AB, Ward PA: Ischemia/reperfusion injury. J Surg Res 105(2):248–258, 2002Google Scholar
  102. 102.
    Zingarelli B, Sheehan M, Wong HR: Nuclear factor-kappaB as a therapeutic target in critical care medicine. Crit Care Med 31(Suppl 1):S105–S111, 2003Google Scholar
  103. 103.
    Siebenlist U, Franzoso G, Brown K: Structure, regulation and func-tion of NF-kappa B. Annu Rev Cell Biol 10:405–455, 1994Google Scholar
  104. 104.
    Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T: Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. FASEB J 9(10):899–909, 1995Google Scholar
  105. 105.
    Barnes PJ: Nuclear factor-kappa B. Int J Biochem Cell Biol 29(6):867–870, 1997Google Scholar
  106. 106.
    Blackwell TS, Christman JW: The role of nuclear factor-kappa B in cytokine gene regulation. Am J Respir Cell Mol Biol 17(1):3–9, 1997Google Scholar
  107. 107.
    Spiecker M, Darius H, Kaboth K, Hubner F, Liao JK: Differential regulation of endothelial cell adhesion molecule expression by nitric oxide donors and antioxidants. J Leukoc Biol 63(6):732–739, 1998Google Scholar
  108. 108.
    Peng HB, Libby P, Liao JK: Induction and stabilization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B. J Biol Chem 270(23):14214–14219, 1995Google Scholar
  109. 109.
    Austen Jr WG, Kobzik L, Carroll MC, Hechtman HB, Moore Jr FD: The role of complement and natural antibody in intestinal ischemia-reperfusion injury. Int J Immunopathol Pharmacol 16(1):1–8, 2003Google Scholar
  110. 110.
    Heller T, Hennecke M, Baumann U, Gessner JE, zu Vilsendorf AM, Baensch M, Boulay F, Kola A, Klos A, Bautsch W, Kohl J: Selection of a C5a receptor antagonist from phage libraries attenuating the inflammatory response in immune complex disease and ischemia/reperfusion injury. J Immunol 163(2):985–994, 1999Google Scholar
  111. 111.
    Kimura T, Andoh A, Fujiyama Y, Saotome T, Bamba T: A blockade of complement activation prevents rapid intestinal ischaemia-reperfusion injury by modulating mucosal mast cell degranulation in rats. Clin Exp Immunol 111(3):484–490, 1998Google Scholar
  112. 112.
    Wada K, Montalto MC, Stahl GL: Inhibition of complement C5 reduces local and remote organ injury after intestinal ischemia/reperfusion in the rat. Gastroenterology 120(1):126–133, 2001Google Scholar
  113. 113.
    Gibbs SA, Weiser MR, Kobzik L, Valeri CR, Shepro D, Hechtman HB: P-selectin mediates intestinal ischemic injury by enhancing complement deposition. Surgery 119(6):652–656, 1996Google Scholar
  114. 114.
    Montalto MC, Hart ML, Jordan JE, Wada K, Stahl GL: Role for complement in mediating intestinal nitric-oxide synthase-2 and superoxide dismutase expression. Am J Physiol Gastrointest Liver Physiol, 285(1):G 197–206, 2003Google Scholar
  115. 115.
    Hernandez LA, Grisham MB, Granger DN: A role for iron in oxidant-mediated ischemic injury to intestinal microvasculature. Am J Physiol 253(1, Pt 1):G49–G53, 1987Google Scholar
  116. 116.
    Lelli JL Jr, Pradhan S, Cobb LM: Prevention of postischemic injury in immature intestine by deferoxamine. J Surg Res 54(1):34–38, 1993Google Scholar
  117. 117.
    Richard V, Kaeffer N, Tron C, Thuillez C: Ischemic preconditioning protects against coronary endothelial dysfunction induced by ischemia and reperfusion. Circulation 89(3):1254–1261, 1994Google Scholar
  118. 118.
    Murry CE, Jennings RB, Reimer KA: Preconditioning with is-chemia: A delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136, 1986Google Scholar
  119. 119.
    Koti RS, Seifalian AM, McBride AG, Yang W, Davidson BR: The relationship of hepatic tissue oxygenation with nitric oxide metabolism in ischemic preconditioning of the liver. FASEB J 16(12):1654–1656, 2002Google Scholar
  120. 120.
    Pang CY, Neligan P, Zhong A, He W, Xu H, Forrest CR: Effector mechanism of adenosine in acute ischemic preconditioning of skeletal muscle against infarction. AmJ Physiol 273(3, Pt 2):R887–R895, 1997Google Scholar
  121. 121.
    Glazier SS, O'Rourke DM, Graham DI, Welsh FA: Induction of ischemic tolerance following brief focal ischemia in rat brain. J Cereb Blood Flow Metab 14(4):545–553, 1994Google Scholar
  122. 122.
    Sakurai M, Hayashi T, Abe K, Aoki M, Sadahiro M, Tabayashi K: Enhancement of heat shock protein expression after transient ischemia in the preconditioned spinal cord of rabbits. J Vasc Surg 27(4):720–725, 1998Google Scholar
  123. 123.
    Turman MA, Bates CM: Susceptibility of human proximal tubular cells to hypoxia: effect of hypoxic preconditioning and comparison to glomerular cells. Ren Fail 19(1):47–60, 1997Google Scholar
  124. 124.
    Du ZY, Hicks M, Winlaw D, Spratt P, Macdonald P: Ischemic preconditioning enhances donor lung preservation in the rat. J Heart Lung Transplant 15(12):1258–1267, 1996Google Scholar
  125. 125.
    Li Y, Roth S, Laser M, Ma JX, Crosson CE: Retinal preconditioning and the induction of heat-shock protein 27. Invest Ophthalmol Vis Sci 44(3):1299–1304, 2003Google Scholar
  126. 126.
    Sola A, De Oca J, Gonzalez R, Prats N, Rosello-Catafau J, Gelpi E, Jaurrieta E, Hotter G: Protective effect of ischemic preconditioning on cold preservation and reperfusion injury associated with rat intestinal transplantation. Ann Surg 234(1):98–106, 2001Google Scholar
  127. 127.
    Davis JM, Gute DC, Jones S, Krsmanovic A, Korthuis RJ: Ischemic preconditioning prevents postischemic P-selectin expression in the rat small intestine. Am J Physiol 277(6, Pt 2):H2476–H2481, 1999Google Scholar
  128. 128.
    Vlasov TD, Smirnov DA, Nutfullina GM: Preconditioning of the small intestine to ischemia in rats. Neurosci Behav Physiol 32(4):449–453, 2002Google Scholar
  129. 129.
    Jenkins DP, Pugsley WB, Alkhulaifi AM, Kemp M, Hooper J, Yellon DM: Ischaemic preconditioning reduces troponin T release in patients undergoing coronary artery bypass surgery. Heart 77(4):314–318, 1997Google Scholar
  130. 130.
    Clavien PA, Selzner M, Rudiger HA, Graf R, Kadry Z, Rousson V, Jochum W: A prospective randomized study in 100 consecutive patients undergoing major liver resection with versus without ischemic preconditioning. Ann Surg 238(6):843–850, 2003Google Scholar
  131. 131.
    Hotter G, Closa D, Prados M, Fernandez-Cruz L, Prats N, Gelpi E, Rosello-Catafau J: Intestinal preconditioning is mediated by a transient increase in nitric oxide. Biochem Biophys Res Commun 222(1):27–32, 1996Google Scholar
  132. 132.
    Unal S, Demirkan F, Arslan E, Cin I, Cinel L, Eskandari G, Cinel I: Comparison of ischemic and chemical preconditioning in jejunal flaps in the rat. Plast Reconstr Surg 112(4):1024–1031, 2003Google Scholar
  133. 133.
    McCallion K, Wattanasirichaigoon S, Gardiner KR, Fink MP: Ischemic preconditioning ameliorates ischemia-and reperfusion-induced intestinal epithelial hyperpermeability in rats. Shock 14(4):429–434, 2000Google Scholar
  134. 134.
    Cohen MV, Baines CP, Downey JM: Ischemic preconditioning: From adenosine receptor of KATP channel. Annu Rev Physiol 62:79–109, 2000Google Scholar
  135. 135.
    Bolli R: The late phase of preconditioning. Circ Res 87(11):972–983, 2000Google Scholar
  136. 136.
    Yellon DM, Dana A: The preconditioning phenomenon: A tool for the scientist or a clinical reality? Circ Res 87(7):543–550, 2000Google Scholar
  137. 137.
    Ferencz A, Szanto Z, Kalmar-Nagy K, Horvath OP, Roth E: Mitigation of oxidative injury by classic and delayed ischemic preconditioning prior to small bowel autotransplantation. Transplant Proc 36(2):286–288, 2004Google Scholar
  138. 138.
    Ferencz A, Szanto Z, Borsiczky B, Kiss K, Kalmar-Nagy K, Szeberenyi J, Horvath PO, Roth E: The effects of preconditioning on the oxidative stress in small-bowel autotransplantation. Surgery 132(5):877–884, 2002Google Scholar
  139. 139.
    Tamion F, Richard V, Lacoume Y, Thuillez C: Intestinal preconditioning prevents systemic inflammatory response in hemorrhagic shock. Role of HO-1. Am J Physiol Gastrointest Liver Physiol 283(2):G408–G414, 2002Google Scholar
  140. 140.
    Wu B, Ootani A, Iwakiri R, Fujise T, Tsunada S, Toda S, Fujimoto K: Ischemic preconditioning attenuates ischemia-reperfusion-induced mucosal apoptosis by inhibiting the mitochondria-dependent pathway in rat small intestine. AmJ Physiol Gastrointest Liver Physiol 286(4):G580–G587, 2004Google Scholar
  141. 141.
    Sola A, Hotter G, Prats N, Xaus C, Gelpi E, Rosello-Catafau J: Modification of oxidative stress in response to intestinal preconditioning. Transplantation 69(5):767–772, 2000Google Scholar
  142. 142.
    Cinel I, Avlan D, Cinel L, Polat G, Atici S, Mavioglu I, Serinol H, Aksoyek S, Oral U: Ischemic preconditioning reduces intestinal epithelial apoptosis in rats. Shock 19(6):588–592, 2003Google Scholar
  143. 143.
    Ahmadinejad M, Rex M, Sutton RH, Pollitt CC, Cribb B: The effects of allopurinol on the ultrastructure of ischaemic and reperfused large intestine of sheep. Aust Vet J 74(2):135–139, 1996Google Scholar
  144. 144.
    Cuzzocrea S, Mazzon E, Dugo L, Caputi AP, Aston K, Riley DP, Salvemini D: Protective effects of a new stable, highly active SOD mimetic, M40401 in splanchnic artery occlusion and reperfusion. Br J Pharmacol 132(1):19–29, 2001Google Scholar
  145. 145.
    Balogh N, Krausz F, Levai P, Ribiczeyne PS, Vajdovich P, Gaal T: Effect of deferoxamine and L-arginine treatment on lipid peroxidation in an intestinal ischaemia-reperfusion model in rats. Acta Vet Hung 50(3):343–356, 2002Google Scholar
  146. 146.
    Cuzzocrea S, Mazzon E, Costantino G, Serraino I, De Sarro A, Caputi AP: Effects of n-acetylcysteine in a rat model of ischemia and reperfusion injury. Cardiovasc Res 47(3):537–548, 2000Google Scholar
  147. 147.
    Yamaguchi T, Dayton C, Shigematsu T, Carter P, Yoshikawa T, Gute DC, Korthuis RJ: Preconditioning with ethanol prevents postischemic leukocyte-endothelial cell adhesive interactions. Am J Physiol Heart Circ Physiol 283(3):H1019–H1030, 2002Google Scholar
  148. 148.
    Nakamura M, Ozaki M, Fuchinoue S, Teraoka S, Ota K: Ascorbic acid prevents ischemia-reperfusion injury in the rat small intestine. Transpl Int 10(2):89–95, 1997Google Scholar
  149. 149.
    Gunel E, Caglayan F, Caglayan O, Dilsiz A, Duman S, Aktan M: Treatment of intestinal reperfusion injury using antioxidative agents. J Pediatr Surg 33(10):1536–1539, 1998Google Scholar
  150. 150.
    Sener G, Akgun U, Satiroglu H, Topaloglu U, Keyer-Uysal M: The effect of pentoxifylline on intestinal ischemia/reperfusion injury. Fundam Clin Pharmacol 15(1):19–22, 2001Google Scholar
  151. 151.
    Hammerman C, Goldschmidt D, Caplan MS, Kaplan M, Schimmel MS, Eidelman AI, Branski D, Hochman A: Amelioration of ischemia-reperfusion injury in rat intestine by pentoxifylline-mediated inhibition of xanthine oxidase. J Pediatr Gastroenterol Nutr 29(1):69–74, 1999Google Scholar
  152. 152.
    Mocan H, Gedik Y, Erduran E, Mocan ZM, Okten A, Gacar N, Pul N: The role of calcium channel entry blocker in experimental ischemia-reperfusion-induced intestinal injury. Pol J Pharmacol 47(2):179–183, 1995Google Scholar
  153. 153.
    Simpson R, Alon R, Kobzik L, Valeri CR, Shepro D, Hechtman HB: Neutrophil and nonneutrophil-mediated injury in intestinal ischemia-reperfusion. Ann Surg 218(4):444–453, 1993Google Scholar
  154. 154.
    Kojima M, Iwakiri R, Wu B, Fujise T, Watanabe K, Lin T, Amemori S, Sakata H, Shimoda R, Oguzu T, Ootani A, Tsunada S, Fujimoto K: Effects of antioxidative agents on apoptosis in-duced by ischaemia-reperfusion in rat intestinal mucosa. Aliment Pharmacol Ther 18 (Suppl 1):139–145, 2003Google Scholar
  155. 155.
    Tomatsuri N, Yoshida N, Takagi T, Katada K, Isozaki Y, Imamoto E, Uchiyama K, Kokura S, Ichikawa H, Naito Y, Okanoue T, Yoshikawa T: Edaravone, a newly developed radical scavenger, protects against ischemia-reperfusion injury of the small intestine in rats. Int J Mol Med 13(1):105–109, 2004Google Scholar
  156. 156.
    Kawata K, Takeyoshi I, Iwanami K, Sunose Y, Aiba M, Ohwada S, Matsumoto K, Morishita Y: A spontaneous nitric oxide donor ameliorates small bowel ischemia-reperfusion injury in dogs. Dig Dis Sci 46(8):1748–1756, 2001Google Scholar
  157. 157.
    Aoki N, Johnson G, III, Lefer AM: Beneficial effects of two forms of NO administration in feline splanchnic artery occlusion shock. Am J Physiol 258(2, Pt 1):G275–G281, 1990Google Scholar
  158. 158.
    Kalia N, Brown NJ, Hopkinson K, Stephenson TJ, Wood RF, Pockley AG: FK409 inhibits both local and remote organ damage after intestinal ischaemia. J Pathol 197(5):595–602, 2002Google Scholar
  159. 159.
    Fox-Robichaud A, Payne D, Hasan SU, Ostrovsky L, Fairhead T, Reinhardt P, Kubes P: Inhaled NO as a viable antiadhesive therapy for ischemia/reperfusion injury of distal microvascular beds. J Clin Invest 101(11):2497–2505, 1998Google Scholar
  160. 160.
    Luo CC, Chen HM, Chiu CH, Lin JN, Chen JC: Effect of N(G)-nitro-L-arginine methyl ester on intestinal permeability following intestinal ischemia-reperfusion injury in a rat model. Biol Neonate 80(1):60–63, 2001Google Scholar
  161. 161.
    Naito Y, Takagi T, Ichikawa H, Tomatsuri N, Kuroda M, Isozaki Y, Katada K, Uchiyama K, Kokura S, Yoshida N, Okanoue T, Yoshikawa T: A novel potent inhibitor of inducible nitric oxide inhibitor, ONO-1714, reduces intestinal ischemia-reperfusion injury in rats. Nitric Oxide 10(3):170–177, 2004Google Scholar
  162. 162.
    Khanna A, Rossman J, Caty MG, Fung HL: Beneficial effects of intraluminal nitroglycerin in intestinal ischemia-reperfusion injury in rats. J Surg Res 114(1):15–24, 2003Google Scholar
  163. 163.
    Arumugam TV, Shiels IA, Woodruff TM, Reid RC, Fairlie DP, Taylor SM: Protective effect of a new C5a receptor antagonist against ischemia-reperfusion injury in the rat small intestine. J Surg Res 103(2):260–267, 2002Google Scholar
  164. 164.
    Zhao H, Montalto MC, Pfeiffer KJ, Hao L, Stahl GL: Murine model of gastrointestinal ischemia associated with complement-dependent injury. J Appl Physiol 93(1):338–345, 2002Google Scholar
  165. 165.
    Williams JP, Pechet TT, Weiser MR, Reid R, Kobzik L, Moore FD Jr, Carroll MC, Hechtman HB: Intestinal reperfusion injury is mediated by IgM and complement. J Appl Physiol 86(3):938–942, 1999Google Scholar
  166. 166.
    Karpel-Massler G, Fleming SD, Kirschfink M, Tsokos GC: Human C1 esterase inhibitor attenuates murine mesenteric ischemia/reperfusion induced local organ injury. J Surg Res 115(2):247–256, 2003Google Scholar
  167. 167.
    Souza DG, Coutinho SF, Silveira MR, Cara DC, Teixeira MM: Effects of a BLT receptor antagonist on local and remote reperfusion injuries after transient ischemia of the superior mesenteric artery in rats. Eur J Pharmacol 403(1–2):121–128, 2000Google Scholar
  168. 168.
    Souza DG, Cara DC, Cassali GD, Coutinho SF, Silveira MR, Andrade SP, Poole SP, Teixeira MM: Effects of the PAF receptor antagonist UK74505 on local and remote reperfusion injuries following ischaemia of the superior mesenteric artery in the rat. Br J Pharmacol 131(8):1800–1808, 2000Google Scholar
  169. 169.
    Sun Z, Olanders K, Lasson A, Dib M, Annborn M, Andersson K, Wang X, Andersson R: Effective treatment of gut barrier dysfunction using an antioxidant, a PAF inhibitor, and monoclonal antibodies against the adhesion molecule PECAM-1. J Surg Res 105(2):220–233, 2002Google Scholar
  170. 170.
    Souza DG, Cassali GD, Poole S, Teixeira MM: Effects of inhibition of PDE4 and TNF-alpha on local and remote injuries following ischaemia and reperfusion injury. Br J Pharmacol 134(5):985–994, 2001Google Scholar
  171. 171.
    Zou L, Attuwaybi B, Kone BC: Effects of NF-kappa Binhibition on mesenteric ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol 284(4):G713–G721, 2003Google Scholar
  172. 172.
    Hassoun HT, Zou L, Moore FA, Kozar RA, Weisbrodt NW, Kone BC: Alpha-melanocyte-stimulating hormone protects against mesenteric ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol 282(6):G1059–G1068, 2002Google Scholar
  173. 173.
    Riaz AA, Wan MX, Schafer T, Dawson P, Menger MD, Jeppsson B, Thorlacius H: Allopurinol and superoxide dismutase protect against leucocyte-endothelium interactions in a novel model of colonic ischaemia-reperfusion. Br J Surg 89(12):1572–1580, 2002Google Scholar
  174. 174.
    Harris NR, Granger DN: Organ procurements and preservation for transplantation. In: Ischemia/Reperfusion injury. New York: Springer Verlag, 1997, pp. 67–81Google Scholar
  175. 175.
    Carmody IC, Meng L, Shen XD, Anselmo D, Gao F, Ke B, Ma JP, Kupiec-Weglinski JW, McDiarmid SV, Busuttil RW, Shaw G, Farmer DG: P-Selectin knockout mice have improved outcomes with both warm ischemia and small bowel transplantation. Transplant Proc 36(2):263–264, 2004Google Scholar
  176. 176.
    Bowles MJ, Pockley AG, Wood RF: Effect of anti-LFA-1 mono-clonal antibody on rat small bowel allograft survival and circulating leukocyte populations. Transpl Immunol 8(1):75–80, 2000Google Scholar
  177. 177.
    Floyd TF, Boroughs A, Garvey C, Dasher J, Ikeda CB, Sloviter HA, Ziegler MM: Intestinal ischemia: treatment by peritoneal lavage with oxygenated perfluorochemical. J Pediatr Surg 22(12):1191–1197, 1987Google Scholar
  178. 178.
    Oldham KT, Guice KS, Gore D, Gourley WK, Lobe TE: Treatment of intestinal ischemia with oxygenated intraluminal perfluorocarbons. Am J Surg 153(3):291–294, 1987Google Scholar
  179. 179.
    Ricci JL, Sloviter HA, Ziegler MM: Intestinal ischemia: Reduction of mortality utilizing intraluminal perfluorochemical. Am J Surg 149(1):84–90, 1985Google Scholar
  180. 180.
    O'Donnell KA, Caty MG, Zheng S, Rossman JE, Azizkhan RG: Oxygenated intraluminal perfluorocarbon protects intestinal muscosa from ischemia/reperfusion injury. J Pediatr Surg 32(2):361–365, 1997Google Scholar
  181. 181.
    Ohara M, Unno N, Mitsuoka H, Kaneko H, Nakamura S: Peritoneal lavage with oxygenated perfluorochemical preserves intestinal mucosal barrier function after ischemia-reperfusion and ameliorates lung injury. Crit Care Med 29(4):782–788, 2001Google Scholar
  182. 182.
    Vejchapipat P, Proctor E, Ramsay A, Petros A, Gadian DG, Spitz L, Pierro A: Intestinal energy metabolism after ischemia-reperfusion: Effects of moderate hypothermia and perfluorocarbons. J Pediatr Surg 37(5):786–790, 2002Google Scholar
  183. 183.
    Fujino Y, Suzuki Y, Kakinoki K, Tanioka Y, Ku Y, Kuroda Y: Protection against experimental small intestinal ischaemia-reperfusion injury with oxygenated perfluorochemical. Br J Surg 90(8):1015–1020, 2003Google Scholar
  184. 184.
    Shashikant MP, Badellino MM, Cooper B, Shaffer TH, Myers SI, Wolfson MR: Physicochemical properties of perfluorochemical liquids influence ventilatory requirements, pulmonary mechanics, and microvascular permeability during partial liquid ventilation following intestinal ischemia/reperfusion injury. Crit Care Med 30(10):2300–2305, 2002Google Scholar
  185. 185.
    Fukatsu K, Zarzaur BL, Johnson CD, Lundberg AH, Wilcox HG, Kudsk KA: Enteral nutrition prevents remote organ injury and death after a gut ischemic insult. Ann Surg 233(5):660–668, 2001Google Scholar
  186. 186.
    Fukatsu K, Lundberg AH, Hanna MK, Wu Y, Wilcox HG, Granger DN, Gaber AO, Kudsk KA: Increased expression of intestinal P-selectin and pulmonary E-selectin during intravenous total parenteral nutrition. Arch Surg 135(10):1177–1182, 2000Google Scholar
  187. 187.
    Wu Y, Kudsk KA, DeWitt RC, Tolley EA, Li J: Route and type of nutrition influence IgA-mediating intestinal cytokines. Ann Surg 229(5):662–667, 1999Google Scholar
  188. 188.
    Lacey JM and Wilmore DW: Is glutamine a conditionally essential amino acid? Nutr Rev 48(8):297–309, 1990Google Scholar
  189. 189.
    Askanazi J, Carpentier YA, Michelsen CB, Elwyn DH, Furst P, Kantrowitz LR, Gump FE, Kinney JM: Muscle and plasma amino acids following injury. Influence of intercurrent infection. AnnSurg 192(1):78–85, 1980Google Scholar
  190. 190.
    Wilmore DW: Growth factors and nutrients in the short bowel syndrome. JPEN J Parenter Enteral Nutr 23(Suppl 5):S117–S120, 1999Google Scholar
  191. 191.
    Ziegler TR, Estivariz CF, Jonas CR, Gu LH, Jones DP, Leader LM: Interactions between nutrients and peptide growth factors in intestinal growth, repair, and function. JPEN J Parenter Enteral Nutr 23(Suppl 6):S174–S183, 1999Google Scholar
  192. 192.
    Li YS, Li JS, Jiang JW, Liu FN, Li N, Qin WS, Zhu H: Glycyl-glutamine-enriched long-term total parenteral nutrition attenuates bacterial translocation following small bowel transplantation in the pig. J Surg Res 82(1):106–111, 1999Google Scholar
  193. 193.
    Sakawaki T, Sasaki K, Hirata K: Saline with glutamine improves cold preserved small bowel graft mortality. Transplant Proc 30(7):3471–3474, 1998Google Scholar
  194. 194.
    Tamaki T, Konoeda Y, Yasuhara M, Tanaka M, Yokota N, Hayashi T, Katori M, Uchida Y, Kawamura A: Glutamine-induced heme oxygenase-1 protects intestines and hearts from warm ischemic injury. Transplant Proc 31(1–2):1018–1019, 1999Google Scholar
  195. 195.
    Zhang W, Bain A, Rombeau JL: Insulin-like growth factor-I (IGF-I) and glutamine improve structure and function in the small bowel allograft. J Surg Res 59(1):6–12, 1995Google Scholar
  196. 196.
    Ikeda S, Zarzaur BL, Johnson CD, Fukatsu K, Kudsk KA: Total parenteral nutrition supplementation with glutamine improves survival after gut ischemia/reperfusion. JPEN J Parenter Enteral Nutr 26(3):169–173, 2002Google Scholar
  197. 197.
    Wischmeyer PE: Glutamine and heat shock protein expression. Nutrition 18(3):225–228, 2002Google Scholar
  198. 198.
    Kelly D, Wischmeyer PE: Role of L-glutamine in critical illness: new insights. Curr Opin Clin Nutr Metab Care 6(2):217–222, 2003Google Scholar
  199. 199.
    Harward TR, Coe D, Souba WW, Klingman N, Seeger JM: Glutamine preserves gut glutathione levels during intestinal ischemia/reperfusion. J Surg Res 56(4):351–355, 1994Google Scholar
  200. 200.
    Lee MA, McCauley RD, Kong SE, Hall JC: Pretreatment with glycine reduces the severity of warm intestinal ischemic-reperfusion injury in the rat. Ann Plast Surg 46(3):320–326, 2001Google Scholar
  201. 201.
    Lee MA, McCauley RD, Kong SE, Hall JC: Influence of glycine on intestinal ischemia-reperfusion injury. JPEN J Parenter Enteral Nutr 26(2):130–135, 2002Google Scholar
  202. 202.
    Grotz MR, Pape HC, van Griensven M, Stalp M, Rohde F, Bock D, Krettek C: Glycine reduces the inflammatory response and organ damage in a two-hit sepsis model in rats. Shock 16(2):116–121, 2001Google Scholar
  203. 203.
    Kelly D, Zhong Z, Wheeler MD, Li X, Froh M, Schemmer P, Yin M, Bunzendaul H, Bradford B, Lemasters JJ: L-Glycine: A novel antiinflammatory, immunomodulatory, and cytoprotective agent. Curr Opin Clin Nutr Metab Care 6(2):229–240, 2003Google Scholar
  204. 204.
    Jacob T, Ascher E, Hingorani A, Kallakuri S: Glycine prevents the induction of apoptosis attributed to mesenteric ischemia/reperfusion injury in a rat model. Surgery 134(3):457–466, 2003Google Scholar
  205. 205.
    Ferrer JV, Ariceta J, Guerrero D, Gomis T, Larrea MM, Balen E, Lera JM: Allopurinol and N-acetylcysteine avoid 60% of intestinal necrosis in an ischemia-reperfusion experimental model. Transplant Proc 30(6):2672, 1998Google Scholar
  206. 206.
    Ozden A, Tetik C, Bilgihan A, Calli N, Bostanci B, Yis O, Duzcan E: Antithrombin III prevents 60 min warm intestinal ischemia reperfusion injury in rats. Res Exp Med (Berl) 198(5):237–246, 1999Google Scholar
  207. 207.
    Puglisi RN, Strande L, Santos M, Doolin EJ, Hewitt CW, Whalen TV: The effect of cyclosporine in gut ischemic injury: a com-puterized morphometric and enzymatic analysis. J Pediatr Surg 31(2):319–322, 1996Google Scholar
  208. 208.
    Berlanga J, Prats P, Remirez D, Gonzalez R, Lopez-Saura P, Aguiar J, Ojeda M, Boyle JJ, Fitzgerald AJ, Playford RJ: Prophylactic use of epidermal growth factor reduces ischemia/reperfusion intestinal damage. Am J Pathol 161(2):373–379, 2002Google Scholar
  209. 209.
    Ustundag B, Kazez A, Demirbag M, Canatan H, Halifeoglu I, Ozercan IH: Protective effect of melatonin on antioxidative system in experimental ischemia-reperfusion of rat small intestine. Cell Physiol Biochem 10(4):229–236, 2000Google Scholar
  210. 210.
    Kazez A, Demirbag M, Ustundag B, Ozercan IH, Saglam M: The role of melatonin in prevention of intestinal ischemia-reperfusion injury in rats. J Pediatr Surg 35(10):1444–1448, 2000Google Scholar
  211. 211.
    Dun Y, Hao YB, Wu YX, Zhang Y, Zhao RR: Protective effects of nitroglycerin-induced preconditioning mediated by calcitonin gene-related peptide in rat small intestine. Eur J Pharmacol 430(2–3):317–324, 2001Google Scholar
  212. 212.
    Cicalese L, Lee K, Schraut W, Watkins S, Borle A, Stanko R: Pyruvate prevents ischemia-reperfusion mucosal injury of rat small intestine. Am J Surg 171(1):97–100, 1996Google Scholar
  213. 213.
    Tetik C, Ozden A, Calli N, Bilgihan A, Bostanci B, Yis O, Bayramoglu H: Cytoprotective effect of trimetazidine on 60 minutes of intestinal ischemia-reperfusion injury in rats. Transpl Int 12(2):108–112, 1999Google Scholar
  214. 214.
    Tsuruma T, Yagihashi A, Hirata K, Matsuno T, Zou XM, Sasaki K, Asanuma K, Endo T: Evaluation of plasma IL-8 (CINC) concentration during ischemia and after reperfusion in the small intestine. Transplant Proc 28(3):1917–1918, 1996Google Scholar
  215. 215.
    Droy-Lefaix MT, Drouet Y, Geraud G, Hosford D, Braquet P: Superoxide dismutase (SOD) and the PAF-antagonist (BN 52021) reduce small intestinal damage induced by ischemia-reperfusion. Free Radic Res Commun 12–13 (Pt 2):725–735, 1991Google Scholar
  216. 216.
    Souza DG, Mendonca VA, de ACM, Poole S, Teixeira MM: Role of tachykinin NK receptors on the local and remote injuries following ischaemia and reperfusion of the superior mesenteric artery in the rat. Br J Pharmacol 135(2):303–312, 2002Google Scholar
  217. 217.
    Yagihashi A, Tsuruma T, Tarumi K, Kameshima T, Yajima T, Yanai Y, Watanabe N, Hirata K: Prevention of small intestinal ischemia-reperfusion injury in rat by anti-cytokine-induced neutrophil chemoattractant monoclonal antibody. J Surg Res 78(2):92–96, 1998Google Scholar
  218. 218.
    Chen Y, Hung WT, Chen SM, Tseng SH: Suppression of elevated plasma interleukin-8 levels due to total ischemia and reperfusion of the small intestine by luminal perfusion with fetal bovine serum. Pediatr Surg Int 18(2–3):107–109, 2002Google Scholar
  219. 219.
    Mazzon E, Dugo L, De SA, Li JH, Caputi AP, Zhang J, Cuzzocrea S: Beneficial effects of GPI 6150, an inhibitor of poly(ADP-ribose) polymerase in a rat model of splanchnic artery occlusion and reperfusion. Shock 17(3):222–227, 2002Google Scholar
  220. 220.
    Xia G, Martin AE, Besner GE: Heparin-binding EGF-like growth factor downregulates expression of adhesion molecules and infiltration of inflammatory cells after intestinal ischemia/reperfusion injury. J Pediatr Surg 38(3):434–439, 2003Google Scholar
  221. 221.
    Kuenzler KA, Pearson PY, Schwartz MZ: Hepatoctye growth factor pretreatment reduces apoptosis and mucosal damage after intestinal ischemia-reperfusion. J Pediatr Surg 37(7):1093 [discussion], 2002Google Scholar
  222. 222.
    Yang ZJ, Bosco G, Montante A, Ou XI, Camporesi EM: Hyperbaric O2 reduces intestinal ischemia-reperfusion-induced TNF-alpha production and lung neutrophil sequestration. Eur J Appl Physiol 85(1–2):96–103, 2001Google Scholar
  223. 223.
    Lane JS, Todd KE, Lewis MP, Gloor B, Ashley SW, Reber HA, McFadden DW, Chandler CF: Interleukin-10 reduces the systemic inflammatory response in a murine model of intestinal ischemia/reperfusion. Surgery 122(2):288–294, 1997Google Scholar
  224. 224.
    Dowdall JF, Winter DC, Bouchier-Hayes DJ: Inosine modulates gut barrier dysfunction and end organ damage in a model of ischemia-reperfusion injury. J Surg Res 108(1):61–68, 2002Google Scholar
  225. 225.
    Stroh R, Christopher TA, Lopez BL, Guo YP, Amico-Roxas M, Ma XL: L-Propionyl carnitine, an endogenous ester in fatty acid metabolism, exerts anti-shock and endothelial protective effects in rat splanchnic ischemia-reperfusion injury. Shock 9(3):216–222, 1998Google Scholar
  226. 226.
    Cuzzocrea S, Tailor A, Zingarelli B, Salzman AL, Flower RJ, Szabo C, Perretti M: Lipocortin 1 protects against splanchnic artery occlusion and reperfusion injury by affecting neutrophil migration. J Immunol 159(10):5089–5097, 1997Google Scholar
  227. 227.
    Warnecke HB, Schirmeier A, Nussler AK, Platz KP, Stange B, Nussler NC, Radke C, Neuhaus P, Mueller AR: The combined treatment with L-arginine and methylprednisolone improves graft morphology and mucosal barrier function. Transplant Proc 34(3):996–998, 2002Google Scholar
  228. 228.
    Loong CC, Chiu JH, Tiao RC, Chiu YY, Wu CW, Lui WY: Pre-treatment with magnolol attenuates ischemia-reperfusion injury in rat small intestine. Transplant Proc 33(7–8):3737–3738, 2001Google Scholar
  229. 229.
    Farmer DG, Amersi F, Shen XD, Gao F, Anselmo D, Ma J, Dry S, McDiarmid SV, Shaw G, Busuttil RW, Kupiec-Weglinski J: Improved survival through the reduction of ischemia-reperfusion injury after rat intestinal transplantation using selective P-selectin blockade with P-selectin glycoprotein ligand-Ig. Transplant Proc 34(3):985, 2002Google Scholar
  230. 230.
    Arumugam TV, Shiels IA, Margolin SB, Taylor SM, Brown L: Pirfenidone attenuates ischaemia-reperfusion injury in the rat small intestine. Clin Exp Pharmacol Physiol 29(11):996–1000, 2002Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Ismail Hameed Mallick
    • 1
  • Wenxuan Yang
    • 1
  • Marc C. Winslet
    • 1
  • Alexander M. Seifalian
    • 1
  1. 1.GI & Hepatobiliary Research Unit, University Department of SurgeryRoyal Free and University College Medical School, University College LondonLondonUK

Personalised recommendations