Agarwal, R., Aggarwal, C., and Prasad, V.V.V. 2001. A tree projection algorithm for generation of frequent itemsets. Journal of Parallel and Distributed Computing, 61:350–371

Google ScholarAgrawal, R., Imielinski, T., and Swami, A. 1993. Mining association rules between sets of items in large databases. In Proc. 1993 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'93), Washington, DC, pp. 207–216.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, A.I. 1996. Fast discovery of association rules. In Advances in Knowledge Discovery and Data Mining, U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds.), AAAI/MIT Press, pp. 307–328.

Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining association rules. In Proc. 1994 Int. Conf. Very Large Data Bases (VLDB'94), Santiago, Chile, pp. 487–499.

Agrawal, R. and Srikant, R. 1995. Mining sequential patterns. In Proc. 1995 Int. Conf. Data Engineering (ICDE'95), Taipei, Taiwan, pp. 3–14.

Bayardo, R.J. 1998. Efficiently mining long patterns from databases. In Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'98), Seattle, WA, pp. 85–93.

Brin, S., Motwani, R., and Silverstein, C. 1997. Beyond market basket: Generalizing association rules to correlations. In Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'97), Tucson, Arizona, pp. 265–276.

Dong, G. and Li, J. 1999. Efficient mining of emerging patterns: Discovering trends and differences. In Proc. 1999 Int. Conf. Knowledge Discovery and Data Mining (KDD'99), San Diego, CA, pp. 43–52.

Grahne, G., Lakshmanan, L., and Wang, X. 2000. Efficient mining of constrained correlated sets. In Proc. 2000 Int. Conf. Data Engineering (ICDE'00), San Diego, CA, pp. 512–521.

Han, J., Dong, G., and Yin, Y. 1999. Efficient mining of partial periodic patterns in time series database. In Proc. 1999 Int. Conf. Data Engineering (ICDE'99), Sydney, Australia, pp. 106–115.

Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without candidate generation. In Proc. 2000 ACMSIGMOD Int. Conf. Management of Data (SIGMOD'00), Dallas, TX, pp. 1–12.

Kamber, M., Han, J., and Chiang, J.Y. 1997. Metarule-guided mining of multi-dimensional association rules using data cubes. In Proc. 1997 Int. Conf. Knowledge Discovery and Data Mining (KDD'97), Newport Beach, CA, pp. 207–210.

Lent, B., Swami, A., and Widom, J. 1997. Clustering association rules. In Proc. 1997 Int. Conf. Data Engineering (ICDE'97), Birmingham, England, pp. 220–231.

Mannila, H., Toivonen, H., and Verkamo, A.I. 1994. Efficient algorithms for discovering association rules. In Proc. AAAI'94 Workshop Knowledge Discovery in Databases (KDD'94), Seattle, WA, pp. 181–192.

Mannila, H., Toivonen, H., and Verkamo, A.I. 1997. Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery, 1:259–289.

Google ScholarNg, R., Lakshmanan, L.V.S., Han, J., and Pang, A. 1998. Exploratory mining and pruning optimizations of constrained associations rules. In Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'98), Seattle, WA, pp. 13–24.

Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L. 1999. Discovering frequent closed itemsets for association rules. In Proc. 7th Int. Conf. Database Theory (ICDT'99), Jerusalem, Israel, pp. 398–416.

Park, J.S., Chen, M.S., and Yu, P.S. 1995. An effective hash-based algorithm for mining association rules. In Proc. 1995 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'95), San Jose, CA, pp. 175–186.

Pei, J., Han, J., and Lakshmanan, L.V.S. 2001. Mining frequent itemsets with convertible constraints. In Proc. 2001 Int. Conf. Data Engineering (ICDE'01), Heidelberg, Germany, pp. 433–332.

Pei, J., Han, J., Lu, H., Nishio, S., Tang, S., and Yang, D. 2001. H-Mine: Hyper-structure mining of frequent patterns in large databases. In Proc. 2001 Int. Conf. Data Mining (ICDM'01), San Jose, CA, pp. 441–448.

Pei, J., Han, J., and Mao, R. 2000. CLOSET: An efficient algorithm for mining frequent closed itemsets. In Proc. 2000 ACM-SIGMOD Int. Workshop Data Mining and Knowledge Discovery (DMKD'00), Dallas, TX, pp. 11–20.

Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., and Hsu, M.-C. 2001. PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. In Proc. 2001 Int. Conf. Data Engineering (ICDE'01), Heidelberg, Germany, pp. 215–224.

Srikant, R. and Agrawal, R. 1996. Mining sequential patterns: Generalizations and performance improvements. In Proc. 5th Int. Conf. Extending Database Technology (EDBT'96), Avignon, France, pp. 3–17.

Silverstein, C., Brin, S., Motwani, R., and Ullman, J. 1998. Scalable techniques for mining causal structures. In Proc. 1998 Int. Conf. Very Large Data Bases (VLDB'98), New York, NY, pp. 594–605.

Savasere, A., Omiecinski, E., and Navathe, S. 1995. An efficient algorithm for mining association rules in large databases. In Proc. 1995 Int. Conf. Very Large Data Bases (VLDB'95), Zurich, Switzerland, pp. 432–443.

Sarawagi, S., Thomas, S., and Agrawal, R. 1998. Integrating association rule mining with relational database systems: Alternatives and implications. In Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD '98), Seattle, WA, pp. 343–354.

Srikant, R., Vu, Q., and Agrawal, R. 1997. Mining association rules with item constraints. In Proc. 1997 Int. Conf. Knowledge Discovery and Data Mining (KDD'97), Newport Beach, CA, pp. 67–73.

Zaki, M.J. and Hsiao, C.J. 2002. CHARM: An efficient algorithm for closed itemset mining. In Proc. 2002 SIAM Int. Conf. Data Mining, Arlington, VA, pp. 457–473.