Computational Economics

, Volume 24, Issue 2, pp 185–207

The Conditional Probability Density Function for a Reflected Brownian Motion

  • Dirk Veestraeten
Article

Abstract

Models in economics and other fields often require a restricted Brownian motion because frequently implicit or explicit barriers restrict the domain. This paper contributes to the literature on reflected Brownian motion by deriving its conditional density function as a closed-form expression that consists of infinite sums of Gaussian densities. This solution is compared with an alternative, trigonometric expression derived earlier. Numerical analyses reveal that convergence properties of the expression derived in this paper are superior to those of the alternative representation for most practically relevant set-ups. Despite the complex appearance of the density formula, its use only requires fractions of a second on simple desktop computers such that, next to the theoretical appeal, also practicability is guaranteed.

asset prices Brownian motion Green's functions Laplace transform reflecting boundaries transition density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abate, J. and Whitt, W. (1987a). Transient behavior of regulated Brownian motion, I: Starting at the origin. Advances in Applied Probability, 19, 560–598.Google Scholar
  2. Abate, J. and Whitt, W. (1987b). Transient behavior of regulated Brownian motion, II: Non-zero initial conditions. Advances in Applied Probability, 19, 599–633.Google Scholar
  3. Ball, C.A. and Roma, A. (1992). Mean reversion tests with reflecting barriers: An application to European Monetary System exchange rates, Temi di discussione, Banca d'Italia, nr. 181.Google Scholar
  4. Beck, J.V., Cole, K.D., Haji-Sheikh, A. and Litkouhi, B. (1992). Heat Conduction Using Green's Functions. Hemisphere, London, p. 522.Google Scholar
  5. Bernstein, J.I. and Sappington, D.E.M. (1999). Setting the X factor in price-cap regulation plans. Journal of Regulatory Economics, 16, 5–25.Google Scholar
  6. Bertola, G. and Caballero, R.J. (1994). Irreversibility and aggregate investment. Review of Economic Studiess, 61, 223–246.Google Scholar
  7. Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–659.Google Scholar
  8. Borodin, A.N. and Salminen, P. (1996). Handbook of Brownian motion – Facts and formulae. Birkhäuser Verlag, Basel, p. 462.Google Scholar
  9. Cavaliere, G. (1997). Asymptotic inference for reflected Brownian motions. Statistica, 57, 553–571.Google Scholar
  10. Diebold, F.X. (1988). Testing for bubbles, reflecting barriers and other anomalies. Journal of Economic Dynamics and Control, 12, 63–70.Google Scholar
  11. Dixit, A. and Pindyck, R.S. (1994). Investment under Uncertainty. Princeton University Press, Princeton, p. 468.Google Scholar
  12. Einstein, A. (1905). Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von inruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik und Chemie, 17, 549–560. Retrieved from: www.wiley-vch.de/berlin/journals/adp/historic.html.Google Scholar
  13. Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. (1954). Tables of integral transforms. Vol. 1, McGraw-Hill, New York, p. 391.Google Scholar
  14. Feller, W. (1971). An Introduction to Probability Theory and its Applications.Vol. 2, 2nd edition, Wiley, New York, p. 669.Google Scholar
  15. Flood, R.P., Rose, A.K. and Mathieson, D.J. (1991). An empirical exploration of exchange rate target zones. Carnegie-Rochester Series on Public Policy, 35, 7–66.Google Scholar
  16. Gautschi, W. (1964). Error function and Fresnel integrals, in: Abramowitz, M. and Stegun, I. A. (eds.) Handbook of Mathmatical Functions, Dover Publications, New York, 295–329.Google Scholar
  17. Gerber, H.U. (1981). On the probability of ruin in the presence of a linear dividend barrier. Scandinavian Actuarial Journal, 103–115.Google Scholar
  18. Gerber, H.U., Goovaerts, M. and De Pril, N. (1981). The Wiener process with drift between a linear retaining and an absorbing barrier. Journal of Computational and Applied Mathematics, 7, 267–269.Google Scholar
  19. Giorno, V., Nobile, A.G. and Ricciardi, L.M. (1986). On some diffusion approximations to queueing systems. Advances in Applied Probability, 18, 991–1014.Google Scholar
  20. Goel, N.S. and Richter-Dyn, N. (1974). Stochastic Models in Biology. Academic Press, New York, p. 269.Google Scholar
  21. Hanson, S.D., Myers, R.J. and Hilker, J.H. (1999). Hedging with futures and options under a truncated cash price distribution. Journal of Agricultural and Applied Economics, 31, 449–459.Google Scholar
  22. Harrison, J.M. (1985). Brownian Motion and Stochastic Flow Systems. Wiley, New York, p. 140.Google Scholar
  23. Harrison, J.M. and Reiman, M.I. (1981). On the distribution of multidimensional reflected Brownian motion. SIAM Journal of Applied Mathematics, 41, 345–361.Google Scholar
  24. Harrison, J.M. and Taksar, M.I. (1983). Instantaneous control of Brownian motion. Mathematics of Operations Research, 8, 439–453.Google Scholar
  25. Ince, E.L. (1926). Ordinary Differential Equations. Dover Publications, New York, p. 558.Google Scholar
  26. de Jong, F. (1994). A univariate analysis of EMS exchange rates using a target zone model. Journal of Applied Econometrics, 9, 31–45.Google Scholar
  27. Karandikar, R.L. and Kulkarni, V.G. (1995). Second-order fluid flow models: Reflected Brownian motion in a random environment. Operations Research, 43, 77–88.Google Scholar
  28. Krugman, P.R. (1991). Target zones and exchange rate dynamics. Quarterly Journal of Economics, 106, 669–682.Google Scholar
  29. Ricciardi, L.M. and Sacerdote, L. (1987). On the probability densities of an Ornstein-Uhlenbeck process with a reflecting boundary. Journal of Applied Probability, 24, 355–369.Google Scholar
  30. Risken, H. (1989). The Fokker-Planck equation. Methods of solution and applications. 2nd edition, Springer-Verlag, Berlin, P. 472.Google Scholar
  31. Siegl, T. and Tichy, R.F. (1999). A process with stochastic claim frequency and a linear dividend barrier. Insurance: Mathematics and Economics, 24, 51–65.Google Scholar
  32. von Smoluchowski, M. (1915). Über Brownsche Molekularbewegung unter Einwirkung äu erer Kräfte und deren Zusammenhang mit der verallgemeinerten Diffusionsgleichung. Annalen der Physik, 48, 1103–1112.Google Scholar
  33. Svensson, L.E.O. (1991). The term structure of interest rate differentials in a target zone. Theory and Swedish data. Journal of Monetary Economics, 28, 87–116.Google Scholar
  34. Tapiero, C.S. (1998). Applied Stochastic Models and Control in Management. North-Holland, Amsterdam. p. 326.Google Scholar
  35. Tapiero, C.S. (1998). Applied Stochastic Models and Control for Finance and Insurance. Kluwer Academic Publishers, Boston, p. 341.Google Scholar
  36. Titchmarsh, E.C. (1948). Introduction to the theory of Fourier integrals. 2nd edition, Clarendon, Oxford, p. 394.Google Scholar
  37. Zelen, M. and Severo, N.C. (1964). Probability Function, in: Abramowitz, M. and Stegun, I.A. (eds.) Handbook of Mathematical Functions, Dover Publications, New York, 925–995.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Dirk Veestraeten
    • 1
  1. 1.Faculty of Economics and Econometrics, Department of EconomicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations