Conservation Genetics

, Volume 5, Issue 4, pp 561–570

Spatial Distribution of Genetic Variation in a Natural Beech Stand (Fagus sylvaticaL.) Based on Microsatellite Markers

  • Barbara Vornam
  • Natalia Decarli
  • Oliver Gailing
Article

Abstract

The spatial distribution of alleles is described in a naturally regenerated, isolated pure beech (Fagus sylvaticaL.) stand consisting of 99 adult trees. After testing nine microsatellite loci originally developed for F. crenata, each tree was genotyped at four well-scorable microsatellite loci. Specific primers were developed for one locus of F. sylvaticaL. For the characterization of spatial genetic structures, two different statistics were used. One method is based on the mean genetic distance between trees in different spatial distance classes, and the other one is Moran's index I. The results show the same tendency of a strong family structure in the distance classes up to 30m in comparison with that expected for a spatially non-systematic distribution of genotypes. In general, microsatellites are more useful to detect spatial genetic structures than allozymes. Spatial genetic structures are influenced by unpredictable factors such as wind direction at anthesis and can therefore vary from year to year. We recommend that seed collections should cover large areas in order to prevent a preponderance of few families and a reduction of the adaptive potential of the next generation.

Fagus sylvatica L. in situ conservation microsatellites spatial autocorrelation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Comps B, Thiébaut B, Paule L, Merzeau D, Letouzey J (1990) Allozymic variability in beechwoods (Fagus sylvatica L.) over central Europe:Spatial differentiation among and within stands. Heredity, 65, 407–417.Google Scholar
  2. Comps B, Thiébaut B, Sugar I, Trinajstic I, Plazibat M (1991) Genetic variation of the Croatian beech stands (Fagus sylvatica L.):Spatial differentiation in connection with the environment. Ann. Sci. For., 48,15–28.Google Scholar
  3. Crow JF, Kimura M (1970) An Introduction to Population Genetics Theory. Harper and Row, New York, Evanston, London.Google Scholar
  4. Decarli Muñoz NA (2003) Räumliche Verteilung der genetischen Ausstattung von Eckern und Jungwuchs der Buche (Fagus sylvatica L.) in Abhängigkeit von Bestandesstrukturen.114 pp. Cuvillier Verlag, Göttingen.Google Scholar
  5. Degen B, Scholz F (1998) Spatial genetic differentiation among populations of European beech (Fagus sylvatica L.) in wes-tern Germany as identi ed by geostatistical analysis. Forest Genetics, 5, 191–199.Google Scholar
  6. Degen B, Petit R, Kremer A (2001) SGS –Spatial genetic software: A computer program for analysis of spatial genetic structures of individuals and populations. Heredity, 92, 447–449.Google Scholar
  7. Doúnavi A (2000) Familienstrukturen in Buchenbeständen (Fagus sylvatica). Forstwiss. Diss. Univ. Göttingen. http:// webdoc.gwdg.de/diss/2000/dounavi.Google Scholar
  8. Doúnavi A, Steiner W, Maurer WD (2002) Effects of different silvicultural treatments on the genetic structure of European beech population (Fagus sylvatica L.). In: Continuous Cover Forestry. Assessment, Analysis, Scenarios, (eds. v.Gadow K, Nagel J, Saborowski J), pp.81–90. Kluwer Academic Pub-lishers, Dordrecht, The Netherlands.Google Scholar
  9. Frankham R (1995) Conservation genetics. Ann. Rev. Genetics, 29,305–327.Google Scholar
  10. Gillet E (1994) GSED –Genetic Structures from Electropho-resis Data. User 's Manual, Göttingen.Google Scholar
  11. Gregorius H-R (1978) The concept of genetic diversity and its formal relationship to heterozygosity and genetic distance. Math. Biosci., 41, 253–271.Google Scholar
  12. Gregorius H-R, Krauhausen J, Müller-Starck G (1986) Spatial and temporal genetic differentiation among the seed in a stand of Fagus sylvatica L. Heredity, 57,255–262.Google Scholar
  13. Hall TA (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucl. Acid. Symp. Ser., 41,95–98.Google Scholar
  14. Hartl DL, Clark AG (1997) Principles of Population Genetics. 3rd edn. Sinauer Assoc. Inc. Sunderland, MS.Google Scholar
  15. Hattemer HH, Ziehe M, Finkeldey R, Fromm M (2001) Ge-netic diversity and differentiation of individual effective pollen clouds in trees. In: Genetic Response of Forest Systems to Changing Environmental Conditions (eds. Müller-Starck G, Schubert R.) pp.223–237. Kluwer Academic Publishers, Dordrecht, ISBN 1-4020-0236-X.Google Scholar
  16. Konnert M, Ziehe M, Trober U, Maurer W, Janßen A, Sander T, Hussendörfer E, Hertel H (2000) Genetische Variation der Buche (Fagus sylvatica L.) in Deutschland: Gemeinsame Auswertung genetischer Inventurenüber verschiedene Bun-desländer. Forst und Holz, 55,403–408.Google Scholar
  17. Leonardi S, Menozzi P (1996) Spatial structure of genetic var-iability in natural stands of Fagus sylvatica L. (beech) in Italy. Heredity, 77, 359–368.Google Scholar
  18. Merzeau D, Comps B, Thiébaut B, Cuguen J, Letouzey J (1994) Genetic structure of natural stands of Fagus sylvatica L. (beech). Heredity, 72, 269–277.Google Scholar
  19. Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika, 37,17–23.PubMedGoogle Scholar
  20. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genetics, 30, 194–200.PubMedGoogle Scholar
  21. Müller-Starck G, Starke R (1993) Inheritance of isoenzymes in European beech (Fagus sylvatica L.). J. Hered., 84, 291–296.Google Scholar
  22. Müller-Starck G, Ziehe M (1991) Genetic variation in popu-lations of Fagus sylvatica L., Quercus robur L., and Q. pet-raea Liebl. in Germany. In: Genetic Variation in European Populations of Forest Trees (eds. Müller-Starck G, Ziehe M). Frankfurt am Main, J.D. Sauerländer 's Verlag.Google Scholar
  23. Müller-Starck R (1996) Genetische Aspekte der Reproduktion der Buche (Fagus sylvatica L.)unter Berücksichtigung waldbaulicher Gegebenheiten. Berichte des Forschungszen-trums Waldökosysteme, Reihe A, Bd.135, Göttingen.Google Scholar
  24. Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York.Google Scholar
  25. Pastorelli R, Smulders MJM, Westende Van 't WPC, Vosman B, Giannini R, Vettori C Vendramin GG (2003) Charac-terization of microsatellite markers in Fagus sylvatica L. and Fagus orientalis Lipsky. Mol. Ecol. Notes, 3, 76–78.Google Scholar
  26. Peakall R, Smouse PE (2001) GENALEX V5.04: Genetic Analysis in EXCEL. Population Genetic Software for Teaching and Research. Australian National University, Canberra, Australia, available at http://www.anm.edu.au/ BoZo/GcnAlEX/.Google Scholar
  27. Program R 1.6.2 Language and Environment with package “spdep ”</del>, available at http://www.r-project.org/.Google Scholar
  28. Rocha EPC, Matic I, Taddei F (2002) Over-representation of repeats in stress response genes:a strategy to increase ver-satility under stressful conditions? Nucl. Acid Res., 30, 1886–1894.Google Scholar
  29. Rozen S, Whitehead Institute /MIT Center for Genome Re-search available at http://www-genome.wi.mit.edu/cgi-bin/ primer/primer3_www.cgi.Google Scholar
  30. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Labo-ratory Press, Plainview, New York.Google Scholar
  31. Sanger FS, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci., 74, 5463–5467.PubMedGoogle Scholar
  32. Smouse P, Dyer RJ, Westfall RD, Sork VL (2001) Two-gen-eration analysis of pollen flow across a landscape. I. Male gamete heterogeneity among females. Evolution, 55, 260–271.PubMedGoogle Scholar
  33. Starke R, Müller-Starck G (1992) Genetische Untersuchungen über die Reproduktion in zwei Beständen der Buche (Fagus sylvatica L.). In: Biochemische Untersuchungen zur Genetik von Waldbaumpopulationen. pp. 57–67 Schriftenreihe der Landesanstalt für Forstwirtschaft Nordrhein-Westfalen 1992.Google Scholar
  34. Starke R, Hattemer HH, Ziehe M, Vornam B, Turok J, Herzog S, Maurer W, Tabel U (1995) Genetische Variation an En-zym-Genloci der Buche. Allgem. Forst-u. Jagdztg., 166, 161–167.Google Scholar
  35. Streiff R, Labbe T, Bacilieri R, Steinkellner H, Glössl J, Kremer A (1998) Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Mol. Ecol., 7,317–328.Google Scholar
  36. Takahashi M, Mukouda M, Koono K (2000) Differences in genetic structure between two Japanese beech (Fagus crenata Blume) stands. Heredity, 84, 103–115.PubMedGoogle Scholar
  37. Tanaka K, Tsumura Y, Nakamura T (1999) Development and polymorphism of microsatellite markers for Fagus crenata and the closely related species, F. japonica. Theor. Appl. Genet., 99, 11–15.Google Scholar
  38. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acid. Res., 22, 4673–4680.Google Scholar
  39. Troggio M, Dimasso E, Leonardi S, Ceroni M, Bucci G, Pio-vani P, Menozzi P (1996) Inheritance of RAPD and I-SSR markers and population parameters estimation in Euro-pean beech (Fagus sylvatica L.). Forest Genetics, 3, 173–181.Google Scholar
  40. Ueno S, Tomaru N, Yoshimaru H, Manabe T, Yamamoto S (2000) Genetic structure of Camellia japonica L. in an old-growth evergreen forest, Tsushima, Japan. Mol. Ecol., 9, 647–656.PubMedGoogle Scholar
  41. Wang K (2001) Gene flow and mating system in European beech (Fagus sylvatica L.),159 pages. Cuvillier Verlag, Göttingen.Google Scholar
  42. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucl. Acids Res., 18, 7213–7218.PubMedGoogle Scholar
  43. Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolu-tion, 19, 395–420.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Barbara Vornam
    • 1
  • Natalia Decarli
    • 1
  • Oliver Gailing
    • 1
  1. 1.Institute of Forest Genetics and Forest Tree BreedingGeorg-August Universität GöttingenGöttingen

Personalised recommendations