Conservation Genetics

, Volume 5, Issue 3, pp 357–365 | Cite as

Low RAPD Variation and Female-Biased Sex Ratio Indicate Genetic Drift in Small Populations of the Dioecious Conifer Taxus Baccata in Switzerland

  • Karin Hilfiker
  • Felix Gugerli
  • Jean-Philippe Schütz
  • Peter Rotach
  • Rolf Holderegger

Abstract

Small populations are prone to genetic drift as a consequence of random sampling effects. We investigated whether we could detect such random sampling effects in the English yew (Taxus baccata), a dioecious conifer species occurring in scattered populations in Switzerland. Seven pairs of small and large populations were analyzed using random amplified polymorphic DNA (RAPD) marker bands from 20 individuals per population. Several genetic parameters (mean marker band frequency deviation, molecular variance, population differentiation) indicated that small populations experienced genetic drift. These genetic differences between small and large populations of yew were paralleled by an increased sex ratio bias towards a higher number of females in the small populations. Our findings support earlier assumptions that the Swiss occurrences of yew may be described as metapopulation dynamics, characterized by local colonization and extinction events leading to the observed genetic drift.

gender bias genetic variation gymnosperm population size forest tree species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsworth C (2000) Boys and girls come out to play: The molecular biology of dioecious plants. Ann. Bot., 86, 211–221.Google Scholar
  2. Allnutt TR, Newton AC, Premoli A, Lara A (2003) Genetic variation in the threatened South American conifer Pilgerodendron uviferum (Cupressaceae), detected using RAPD markers. Biol. Conserv., 114, 245–253.Google Scholar
  3. Barengo N, Rudow A, Schwab P (eds.) (2001) Förderung seltener Baumarten auf der Schweizer Alpennordseite BUWAL/ETHZ, Bern.Google Scholar
  4. Charlesworth D (2002) Plant sex determination and sex chromosomes. Heredity, 88, 94–101.PubMedGoogle Scholar
  5. Delph LF (1999) Sexual dimorphism in life history. In: Gender and Sexual Dimorphism in Flowering Plants (eds. Geber MA, Dawson TE, Delph LF), pp. 149–173. Springer, Berlin, Heidelberg.Google Scholar
  6. DiFazio SP, Vance NC, Wilson MV (1996) Variation in sex expression of Taxus brevifolia in western Oregon. Can. J. Bot., 74, 1943–1946.Google Scholar
  7. Ellenberg H (1988) Vegetation Ecology of Central Europe. Cambridge University Press, Cambridge.Google Scholar
  8. Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: Implications for plant conservation. Annu. Rev. Ecol. Syst., 24, 217–242.Google Scholar
  9. Excoffier L (1993) Win Amova. Analysis of Molecular Variance. Genetics and Biometry Laboratory, University of Geneva, Geneva.Google Scholar
  10. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.PubMedGoogle Scholar
  11. Fischer M, Matthies D (1998) RAPD variation in relation to population size and plant performance in the rare Gentianella germanica (Gentianaceae). Am. J. Bot., 85, 811–819.Google Scholar
  12. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to Conservation Genetics. Cambridge University Press, Cambridge.Google Scholar
  13. García D, Zamora R, Hódar JA, Gómez JM, Castro J (2000) Yew (Taxus baccata L.) regeneration is facilitated by fleshy-fruited shrubs in Mediterranean environments. Biol. Conserv., 95, 31–38.Google Scholar
  14. Godoy JA, Jordano P (2001) Seed dispersal by animals: Exact identification of source trees with endocarp DNA microsatellites. Mol. Ecol., 10, 2275–2283.PubMedGoogle Scholar
  15. Haldane JBS (1922) Sex-ratio and unisexual sterility in hybrid animals. J. Genet., 12, 101–109.CrossRefGoogle Scholar
  16. Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos. Trans. Roy. Soc. Lond. B, 351, 1291–1298.Google Scholar
  17. Hartl DL, Clark AG (1997) Principles of Population Genetics. 3rd edn. Sinauer Associates, Sunderland.Google Scholar
  18. Hoebee SE, Young AG (2001) Low neighbourhood size and high interpopulation differentiation in the endangered shrub Grevillea iaspicula McGill (Proteaceae). Heredity, 86, 489–496.PubMedGoogle Scholar
  19. Holderegger R (1997) Recent perspectives in conservation biology of rare plants. Bull. Geobot. Inst. ETH, 63, 109–116.Google Scholar
  20. Huenneke LF (1991) Ecological implications of genetic variation in plant populations. In: Genetics and Conservation of Rare Plants (eds. Falk DA, Holsinger KE), pp. 31–44. Oxford University Press, Oxford.Google Scholar
  21. Korpelainen H (2002) A genetic method of resolve gender complements investigations on sex ratios in Rumex acetosa. Mol. Ecol., 11, 2151–2156.PubMedGoogle Scholar
  22. Landergott U, Holderegger R, Kozlowski G, Schneller JJ (2001) Historical bottlenecks decrease genetic diversity in natural populations of Dryopteris cristata. Heredity, 87, 344–355.PubMedGoogle Scholar
  23. Levin DA (1995) Metapopulation: An arena for local speciation. J. Evol. Biol., 8, 635–644.Google Scholar
  24. Lienert J, Fischer M, Schneller JJ, Diemer M (2002) Isozyme variability of the wetland specialist Swertia perennis (Gentianaceae) in relation to habitat size, isolation, and plant fitness. Amer. J. Bot., 89, 801–811.Google Scholar
  25. Mátyás G, Sperisen C (2001) Chloroplast DNA polymorphisms provide evidence for postglacial recolonisation of oaks (Quercus spp.) across the Swiss Alps. Theor. Appl. Genet., 102, 12–20.Google Scholar
  26. Miller R, Campling J (2002) SPSS for Social Scientists. Palgrave, Basingstoke.Google Scholar
  27. Nei M, Maruyama T, Charkaborty R (1975) The bottleneck effect and genetic variability in populations. Evolution, 29, 1–10.Google Scholar
  28. Oddou-Muratorio S, Petit RJ, Le-Guerroué B, Guesnet D, Demesure B (2001) Pollen-versus seed-mediated gene flow in a scattered forest tree species. Evolution, 55, 1123–1135.PubMedGoogle Scholar
  29. Ortiz PL, Arista M, Talavera S (2002) Sex ratio and reproductive effort in the dioecious Juniperus communis subsp. alpina (Suter) Celak. (Cupressaceae) along an altitudinal gradient. Ann. Bot., 89, 205–211.PubMedGoogle Scholar
  30. Paule L, Gömöry D, Longauer R (1993) Present distribution and ecological conditions of the English yew (Taxus baccata L.) in Europe. In: Proceedings of Yew (Taxus) Conservation Biology and Interaction (eds. Scher S, Shimon Schwarzschild B), Berkley, pp. 189-196.Google Scholar
  31. Pridnya MV (1984) Phytocenotic status and structure of the Khosta common-yew population in the Caucasus Biosphere Reserve. Soviet J. Ecol., 15, 1–6.Google Scholar
  32. Rajewski M, Lange S, Hattemer HH (2000) Reproduktion bei der Generhaltung seltener Baumarten-das Beispiel der Eibe (Taxus baccata L.). For. Snow Landsc. Res., 75, 251–266.Google Scholar
  33. Richards AJ (1997) Plant Breeding Systems. 2nd edn. Chapman & Hall, London.Google Scholar
  34. Schmidt K, Jensen K (2000) Genetic structure and AFLP variation of remnant populations in the rare plant Pedicularis palustris (Scrophulariaceae) and its relation to population size and reproductive components. Amer. J. Bot., 87, 678–689.Google Scholar
  35. Senneville S, Beaulieu J, Daoust G, Deslavriers M, Bousquet J (2001) Evidence for low genetic diversity and metapopulation structure in Canada yew (Taxus canadensis): considerations for conservation. Can. J. For. Res., 31, 110–116.Google Scholar
  36. SPSS (2000) SyStat. SPSS Inc., Chicago.Google Scholar
  37. Stehlik I, Blattner FR (in press) Sex-specific SCAR markers in the dioecious plant Rumex nivalis (Polygonaceae) and implications for the evolution of sex chromosomes. Theor. Appl. Genet.Google Scholar
  38. Svenning J-C, Magård E (1999) Population ecology and conservation status of the last natural population of English yew Taxus baccata in Denmark. Biol. Conserv., 88, 173–182.Google Scholar
  39. Thomas PA, Polwart A (2003) Biological flora of the British Isles: Taxus baccata L. J. Ecol., 91, 489–524.Google Scholar
  40. Vasiliauskas SA, Aarssen LW (1992) Sex-ratio and neighbor effects in monospecific stands of Juniperus virginiana. Ecology, 73, 622–632.Google Scholar
  41. Young AG, Boyle TJ (2000) Forest fragmentation. In: Forest Conservation Genetics (eds. Young AG, Boshier D, Boyle T), pp. 123–134. CABI, Collingwood.Google Scholar
  42. Young AG, Boyle TJ, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol., 11, 413–418.Google Scholar
  43. Zoller H (1991) Taxus. In: Gustav Hegi-Illustrierte Flora von Mitteleuropa (eds. Conert HJ, Hamann U, Schultze-Motel W, Wagenitz G), pp. 127–134. Blackwell, Berlin.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Karin Hilfiker
    • 1
    • 2
  • Felix Gugerli
    • 1
  • Jean-Philippe Schütz
    • 2
  • Peter Rotach
    • 2
  • Rolf Holderegger
    • 1
  1. 1.Division of Ecological GeneticsSwiss Federal Research Institute WSLBirmensdorfSwitzerland
  2. 2.Chair of SilvicultureSwiss Federal Institute of Technology ZürichZürichSwitzerland

Personalised recommendations