Clinical & Experimental Metastasis

, Volume 21, Issue 2, pp 119–128

A small molecule antagonist of the αvβ3 integrin suppresses MDA-MB-435 skeletal metastasis

  • John F. Harms
  • Danny R. Welch
  • Rajeev S. Samant
  • Lalita A. Shevde
  • Mary E. Miele
  • Geetha R. Babu
  • Steven F. Goldberg
  • Virginia R. Gilman
  • Donna M. Sosnowski
  • Dianalee A. Campo
  • Carol V. Gay
  • Lynn R. Budgeon
  • Robin Mercer
  • Jennifer Jewell
  • Andrea M. Mastro
  • Henry J. Donahue
  • Nuray Erin
  • Michael T. Debies
  • William J. Meehan
  • Amy L. Jones
  • Gabriel Mbalaviele
  • Allen Nickols
  • Neil D. Christensen
  • Robert Melly
  • Lisa N. Beck
  • Julia Kent
  • Randall K. Rader
  • John J. Kotyk
  • M.D. Pagel
  • William F. Westlin
  • David W. Griggs
Article

Abstract

Introduction: Breast cancer is one of the most common malignancies affecting women in the United States and Europe. Approximately three out of every four women with breast cancer develop metastases in bone which, in turn, diminishes quality of life. The αvβ3 integrin has previously been implicated in multiple aspects of tumor progression, metastasis and osteoclast bone resorption. Therefore, we hypothesized that the αvβ3-selective inhibitor, S247, would decrease the development of osteolytic breast cancer metastases. Materials and methods: Cells were treated in vitro with S247 and assessed for viability and adhesion to matrix components. Athymic mice received intracardiac (left ventricle) injections of human MDA-MB-435 breast carcinoma cells expressing enhanced green-fluorescent protein. Mice were treated with vehicle (saline) or S247 (1, 10, or 100 mg/kg/d) using osmotic pumps beginning either one week before or one week after tumor cell inoculation. Bones were removed and examined by fluorescence microscopy and histology. The location and size of metastases were recorded. Results and conclusions: IC50 for S247 adhesion to αvβ3 or αIIBβ3a substrates was 0.2 nM vs. 244 nM, respectively. Likewise, S247 was not toxic at doses up to 1000 μM. However, osteoclast cultures treated with S247 exhibited marked morphological changes and impaired formation of the actin sealing zone. When S247 was administered prior to tumor cells, there was a significant, dose-dependent reduction (25–50% of vehicle-only-treated mice; P=0.002) in osseous metastasis. Mice receiving S247 after tumor cell inoculation also developed fewer bone metastases, but the difference was not statistically significant. These data suggest that, in the MDA-MB-435 model, the αvβ3 integrin plays an important role in early events (e.g., arrest of tumor cells) in bone metastasis. Furthermore, the data suggest that αvβ3 inhibitors may be useful in the treatment and/or prevention of breast cancer metastases in bone.

breast cancer metastasis bone MDA-MB-435 green fluorescent protein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sloan EK, Anderson RL. Genes involved in breast cancer metastasis to bone. Cell Mol Life Sci 2002; 59: 1491–502.PubMedCrossRefGoogle Scholar
  2. 2.
    Mastro AM, Gay CV, Welch DR. The skeleton as a unique environment for breast cancer cells. Clin Exp Metast 2003; 20: 275–84.CrossRefGoogle Scholar
  3. 3.
    Rodan GA, Martin JT. Therapeutic approaches to bone diseases. Science 2000; 289: 1508–14.PubMedCrossRefGoogle Scholar
  4. 4.
    Fleisch H. Bisphosphonates: mechanisms of action. Exp Opin Ther Pathol 2001; 11: 1371–1381.CrossRefGoogle Scholar
  5. 5.
    Major PP, Lipton A, Berenson J et al. Oral bisphosphonates-A review of clinical use in patients with bone metastases. Cancer 2000; 88: 6–14.PubMedCrossRefGoogle Scholar
  6. 6.
    Lipton A, Theriault RL, Hortobagyi GN et al. Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases-Long term follow-up of two randomized, placebo-controlled trials. Cancer 2000; 88: 1082–90.PubMedCrossRefGoogle Scholar
  7. 7.
    Welch DR, Harms JF, Mastro AM et al. Breast cancer metastasis to bone: Evolving models and research challenges. J Musculoskel Neur Interact 2003; 3: 30–8.Google Scholar
  8. 8.
    Müller A, Homey B, Soto H et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410: 50–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Roodman GD. Role of stromal-derived cytokines and growth factors in bone metastasis. Cancer 2003; 97: 733–8.CrossRefGoogle Scholar
  10. 10.
    Ruoslahti E. Specialization of tumour vasculature. Nat Rev Cancer 2002; 2: 83–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Frisch SM, Ruoslahti E. Integrins and anoikis. Curr Opin Cell Biol 1997; 9: 701–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Price JT, Bonovich MT, Kohn EC. The biochemistry of cancer dissemination. Crit Rev Biochem Mol Biol 1997; 32: 175–253. ••Au: are pagenumbers correct?••PubMedGoogle Scholar
  13. 13.
    Kumar CC. Signaling by integrin receptors. Oncogene 1998; 17: 1365–73.PubMedCrossRefGoogle Scholar
  14. 14.
    Schwartz MA, Ginsberg MH. Networks and crosstalk: Integrin signalling spreads. Nat Cell Biol 2002; 4: E65–E8.PubMedCrossRefGoogle Scholar
  15. 15.
    Felding-Habermann B. Integrin adhesion receptors in tumor metastasis. Clin Exp Metast 2003; 20: 203–13.CrossRefGoogle Scholar
  16. 16.
    Pecheur I, Peyruchaud O, Serre CM et al. Integrin avb3 expression confers on tumor cells a greater propensity to metastasize to bone. FASEB J 2002; 16: 1266–68.PubMedGoogle Scholar
  17. 17.
    Horton MA. The alpha v beta 3 integrin 'vitronectin receptor'. Int J Biochem Cell Biol 1997; 29: 721–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Faccio R, Grano M, Colucci S et al. Activation of alphav beta3 integrin on human osteoclast-like cells stimulates adhesion and migration in response to osteopontin. Biochem Biophys Res Comm 1998; 249: 522–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Nakamura I, Pilkington MF, Lakkakorpi PT et al. Role of avb3 integrin in osteoclast migration and formation of the sealing zone. J Cell Sci 1999; 112 (Pt 22): 3985–93.PubMedGoogle Scholar
  20. 20.
    Carron CP, Meyer DM, Engleman VW et al. Peptidomimetic antagonists of avb3 inhibit bone resorption by inhibiting osteoclast bone resorptive activity, not osteoclast adhesion to bone. J Endocrinol 2000; 165: 587–98.PubMedCrossRefGoogle Scholar
  21. 21.
    Teti A, Migliaccio S, Baron R. The role of the avb3 integrin in the development of osteolytic bone metastases: A pharmacological target for alternative therapy? Calcif Tissue Int 2002; 71: 293–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Schaffner P, Dard MM. Structure and function of RGD peptides involved in bone biology. Cell Molec Life Sci 2003; 60: 119–32.PubMedCrossRefGoogle Scholar
  23. 23.
    Liapis H, Flath A, Kitazawa S. Integrin alpha V beta 3 expression by bone-residing breast cancer metastases. Diagn Mol Pathol 1996; 5: 127–35.PubMedCrossRefGoogle Scholar
  24. 24.
    van der Pluijm G, Vloedgraven H, Papapoulos S et al. Attachment characteristics and involvement of integrins in adhesion of breast cancer cell lines to extracellular bone matrix components. Lab Invest 1997; 77: 665–75.PubMedGoogle Scholar
  25. 25.
    Chellaiah M, Kizer N, Silva M et al. Gelsolin deficiency blocks podosome assembly and produces increased bone mass and strength. J Cell Biol 2000; 148: 665–78.PubMedCrossRefGoogle Scholar
  26. 26.
    Voura EB, Ramjeesingh RA, Montgomery AMP et al. Involvement of integrin a(v)b(3) and cell adhesion molecule L1 in transendothelial migration of melanoma cells. Mol Biol Cell 2001; 12: 2699–710.PubMedGoogle Scholar
  27. 27.
    van der Pluijm G, Vloedgraven HJ, Ivanov B et al. Bone sialoprotein peptides are potent inhibitors of breast cancer cell adhesion to bone. Cancer Res 1996; 56: 1948–55.PubMedGoogle Scholar
  28. 28.
    Kerr JS, Slee AM, Mousa SA. The a(v) integrin antagonists as novel anticancer agents: an update. Exp Opin Invest Drugs 2002; 11: 1765–74.CrossRefGoogle Scholar
  29. 29.
    Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994; 264: 569–71.PubMedGoogle Scholar
  30. 30.
    Westlin WF. Integrins as targets of angiogenesis inhibition. Cancer J 2001; 7: S139–S43.PubMedGoogle Scholar
  31. 31.
    Bartfeld NS, Pasquale EB, Geltosky JE et al. The alpha v beta 3 integrin associates with a 190-kDa protein that is phosphorylated on tyrosine in response to platelet-derived growth factor. J Biol Chem 1993; 268: 17270–6.PubMedGoogle Scholar
  32. 32.
    Vuori K, Ruoslahti E. Association of insulin receptor substrate-1 with integrins. Science 1994; 266: 1576–8.PubMedGoogle Scholar
  33. 33.
    Schneller M, Vuori K, Ruoslahti E. Alphavbeta3 integrin associates with activated insulin and PDGFbeta receptors and potentiates the biological activity of PDGF. EMBO J 1997; 16: 5600–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Borges E, Jan Y, Ruoslahti E. Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain. J Biol Chem 2000; 275: 39867–73.PubMedCrossRefGoogle Scholar
  35. 35.
    Schwartz MA, Assoian RK. Integrins and cell proliferation: Regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J Cell Sci 2001; 114: 2553–60.PubMedGoogle Scholar
  36. 36.
    Felding-Habermann B, O'Toole TE, Smith JW et al. Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci 2001; 98: 1853–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Felding-Habermann B, Fransvea E, O'Toole TE et al. Involvement of tumor cell integrin avb3 in hematogenous metastasis of human melanoma cells. Clin Exp Metast 2002; 19: 427–36.CrossRefGoogle Scholar
  38. 38.
    Nakamura I, Gailit J, Sasaki T. Osteoclast integrin alphaVbeta3 is present in the clear zone and contributes to cellular polarization. Cell Tissue Res 1996; 286: 507–15.PubMedCrossRefGoogle Scholar
  39. 39.
    Faccio R, Grano M, Colucci S et al. Localization and possible role of two different alpha v beta 3 integrin conformations in resting and resorbing osteoclasts. J Cell Sci 2002; 115: 2919–29.PubMedGoogle Scholar
  40. 40.
    Chambers AF, Tuck AB. Ras-responsive genes and tumor metastasis. Crit Rev Oncog 1993; 4: 95–114.PubMedGoogle Scholar
  41. 41.
    Oates AJ, Barraclough R, Rudland PS. The role of osteopontin in tumorigenesis and metastasis. Invas Metast 1997; 17: 1–15.Google Scholar
  42. 42.
    Yeatman TJ, Chambers AF. Osteopontin and colon cancer progression. Clin Exp Metast 2003; 20: 85–90.CrossRefGoogle Scholar
  43. 43.
    Carron CP, Meyer DM, Pegg JA et al. A peptidomimetic antagonist of the integrin avb3 inhibits Leydig cell tumor growth and the development of hypercalcemia of malignancy. Cancer Res 1998; 58: 1930–5.PubMedGoogle Scholar
  44. 44.
    Engleman VW, Nickols GA, Ross FP et al. A peptidomimetic antagonist of the alpha(v)beta3 integrin inhibits bone resorption in vitro and prevents osteoporosis in vivo. J Clin Invest 1997; 99: 2284–92.PubMedGoogle Scholar
  45. 45.
    Reinmuth N, Liu WB, Ahmad SA et al. a(v)b(3) Integrin antagonist S247 decreases colon cancer metastasis and angiogenesis and improves survival in mice. Cancer Res 2003; 63: 2079–87.PubMedGoogle Scholar
  46. 46.
    Griggs D, Shannon K, Settle S et al. Anti-metastatic efficacy mediated by peptidomimetic avb3 integrin antagonists in orthotopic and experimental models. Proc Am Assoc Cancer Res 2001; 42: 463.Google Scholar
  47. 47.
    Harms JF, Welch DR. MDA-MB-435 human breast carcinoma metastasis to bone. Clin Exp Metast 2003; 20: 327–34.CrossRefGoogle Scholar
  48. 48.
    Ellison G, Klinowska T, Westwood RFR et al. Further evidence to support the melanocytic origin of MDA-MB-435. J Clin Pathol Mol Pathol 2002; 55: 294–9.CrossRefGoogle Scholar
  49. 49.
    Ellison G, Klinowska TCM, Westwood RF et al. Further evidence to support the melanocytic origin of MDA-MB-435. Mol Pathol 2002; 55: 294–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Grijalva R, Yang W, Zhou X et al. Lineage Infidelity of MDA-MB-435 Cells: Expression of melanocyte proteins in a breast cancer cell line. Proc Am Assoc Cancer Res 2003; 44: 3155.Google Scholar
  51. 51.
    Cailleau R, Young R, Olive M et al. Breast tumor cell lines from pleural effusions. J Natl Cancer Inst 1974; 53: 661–74.PubMedGoogle Scholar
  52. 52.
    Cailleau R, Olive M, Cruciger QVJ. Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro 1978; 14: 911–5.PubMedGoogle Scholar
  53. 53.
    Cook MJ. The anatomy of the laboratory mouse. In: ••Editors (eds):••Title bk•• New York: Academic Press 1965.Google Scholar
  54. 54.
    Harms JF, Budgeon LR, Christensen ND et al. Maintaining green fluorescent protein tissue fluorescence through bone decalcification and long-term storage. Biotechniques 2002; 33: 1197–200.PubMedGoogle Scholar
  55. 55.
    Etzioni R, Urban N, Ramsey S et al. The case for early detection. Nat Rev Cancer 2003; 3: 243–52.PubMedCrossRefGoogle Scholar
  56. 56.
    Rubens RD, Mundy GR. Cancer and the skeleton. In: ••Editors (eds): Title bk.•• London: Martin Dunitz 2000.Google Scholar
  57. 57.
    Mundy GR. Mechanisms of bone metastasis. Cancer 1997; 80: 1546–56.PubMedCrossRefGoogle Scholar
  58. 58.
    Rolli M, Fransvea E, Pilch J et al. Activated integrin avb3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci 2003; 100: 9482–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Guise TA, Yin JJ, Taylor SD et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest 1996; 98: 1544–9.PubMedGoogle Scholar
  60. 60.
    Guise TA, Mundy GR. Cancer and bone. Endocrine Rev 1998; 19: 18–54.CrossRefGoogle Scholar
  61. 61.
    Yin JJ, Selander K, Chirgwin JM et al. TGF-b signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 1999; 103: 197–206.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • John F. Harms
    • 1
  • Danny R. Welch
    • 1
    • 2
    • 3
    • 4
    • 5
  • Rajeev S. Samant
    • 1
    • 2
    • 3
  • Lalita A. Shevde
    • 1
    • 2
    • 3
  • Mary E. Miele
    • 6
  • Geetha R. Babu
    • 1
  • Steven F. Goldberg
    • 1
  • Virginia R. Gilman
    • 7
  • Donna M. Sosnowski
    • 7
  • Dianalee A. Campo
    • 7
  • Carol V. Gay
    • 5
    • 7
  • Lynn R. Budgeon
    • 1
  • Robin Mercer
    • 7
  • Jennifer Jewell
    • 7
  • Andrea M. Mastro
    • 5
    • 7
  • Henry J. Donahue
    • 5
    • 8
  • Nuray Erin
    • 1
  • Michael T. Debies
    • 1
  • William J. Meehan
    • 1
  • Amy L. Jones
    • 9
  • Gabriel Mbalaviele
    • 9
  • Allen Nickols
    • 9
  • Neil D. Christensen
    • 1
  • Robert Melly
    • 1
  • Lisa N. Beck
    • 1
  • Julia Kent
    • 1
  • Randall K. Rader
    • 8
  • John J. Kotyk
    • 9
  • M.D. Pagel
    • 9
  • William F. Westlin
    • 9
  • David W. Griggs
    • 9
  1. 1.Jake Gittlen Cancer Research Institute, The Pennsylvania State University College of MedicineHersheyUSA
  2. 2.Department of PathologyUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.Comprehensive Cancer CenterUniversity of Alabama at BirminghamBirminghamUSA
  4. 4.Center for Metabolic Bone DiseaseUniversity of Alabama at BirminghamBirminghamUSA
  5. 5.National Foundation for Cancer Research - Center for Metastasis ResearchUSA
  6. 6.Department of Medical TechnologyUniversity of DelawareNewarkUSA
  7. 7.Department of Biochemistry & MOlecular BiologyPenn State UniversityUSA
  8. 8.Department of Orthopaedics & RehabilitationPennsylvania State University College of MedicineHersheyUSA
  9. 9.Discovery Oncology Pharmacology & Analytical Sciences CenterPfizer CorporationSt. LouisUSA
  10. 10.Department of Gastroenterology and HepatologyPennsylvania State University College of MedicineHersheyUSA
  11. 11.Department of PharmacologyPraecis Pharmaceuticals, Inc.WalthamUSA

Personalised recommendations