Climatic Change

, Volume 66, Issue 3, pp 271–319 | Cite as

Beyond Gaia: Thermodynamics of Life and Earth System Functioning

  • Axel Kleidon
Article

Abstract

Are there any general principles that govern the way in which life affects Earth system functioning? Most prominently, the Gaia hypothesis addresses this question by proposing that near-homeostatic conditions on Earth have been maintained “by and for the biosphere.” Here the role of the biota in the Earth system is described from a viewpoint of nonequilibrium thermodynamics, particularly with respect to the hypothesis of maximum entropy production (MEP). It is argued that the biota introduce additional degrees of freedom to Earth system processes. Therefore, we should expect biotic activity, and Earth system processes affected by the biota, to evolve to states of MEP. The consistent effects of the biota on entropy production are demonstrated with a conceptual model of biogeochemical cycling, by using extreme climate model simulations of a “Desert World” and a “Green Planet”, and by a simple coupled climate-carbon cycle model. It is shown that homeostatic behavior can emerge from a state of MEP associated with the planetary albedo. This thermodynamic perspective is then discussed in the context of the original Gaia hypothesis and in light of a recent discussion in Climatic Change. Potential implications of the MEP hypothesis for global change research are also discussed. It is concluded that the resulting behavior of a biotic Earth at a state of MEP may well lead to near-homeostatic behavior of the Earth system on long time scales, as stated by the Gaia hypothesis. However, here homeostasis is a result of the application of the MEP hypothesis to biotically influenced processes rather than a postulate. Besides providing a fundamental perspective on homeostasis, the MEP hypothesis also provides a framework to understand why photosynthetic life would be a highly probable emergent characteristic of the Earth system and why the diversity of life is an important characteristic of Earth system functioning.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berner, R. A.: 1993, 'Atmospheric Carbon Dioxide Levels Over Phanerozoic Time', Science 249, 1382–1386.Google Scholar
  2. Berner, R. A.: 1997, 'The Rise of Plants and Their Effect on Weathering and Atmospheric CO2', Science 276, 544–546.Google Scholar
  3. Boltzmann, L.: 1886, 'Der zweite Hauptsatz der mechanischen Wärmetheorie', Sitzungsber. Kaiserl. Akad. Wiss., Wien.Google Scholar
  4. Budyko, M. I.: 1969, 'Effects of Solar Radiation Variations on Climate of Earth', Tellus 211, 611–619.Google Scholar
  5. Caldeira, K.: 1989, 'Evolutionary Pressures on Planktonic Production of Atmospheric Sulfur', Nature 337, 732–734.Google Scholar
  6. Caldeira, K. and Kasting, J. F.: 1992, 'The Life Span of the Biosphere Revisited', Nature 360, 721–723.Google Scholar
  7. Chapin, F. S. III, Zavaleta, E., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., Mack, M. C., and Diaz, S.: 2000, 'Consequences of Changing Biodiversity', Nature 405, 234–242.Google Scholar
  8. Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: 1987, 'Oceanic Phytoplankton, Atmospheric Sulphur, Cloud Albedo, and Climate', Nature 326, 655–661.Google Scholar
  9. Cowan, I. R.: 1977, 'Stomatal Behaviour and Environment', Adv. Bot. Res. 4, 117–128.Google Scholar
  10. Cowan, I. R. and Farquhar, G. D.: 1977, 'Stomatal Functioning in Relation to Leaf Metabolism and Environment', in Jennings, D. H. (ed.), Integration of Activity in the Higher Plants, pp. 471–505, Cambridge University Press, Cambridge, UK.Google Scholar
  11. Currie, D. J. and Paquin, V.: 1987, 'Large-Scale Biogeographical Patterns of Species Richness of Trees', Nature 329, 326–327.Google Scholar
  12. Dewar, R. C.: 2003, 'Information Theory Explanation of the Fluctuation Theorem, Maximum Entropy Production, and Self-Organized Criticality in Nonequilibrium Stationary States', J. Phys. A36, 631–641.Google Scholar
  13. Downing, K. and Zvirinsky, P.: 1999, 'The Simulated Evolution of Biochemical Guilds: Reconciling Gaia Theory and Natural Selection', Artif. Life 5, 291–318.Google Scholar
  14. Essex, C.: 1984, 'Radiation and the Irreversible Thermodynamics of Climate', J. Atmos. Sci. 41, 1985–1991.Google Scholar
  15. Evans, D. A., Beukes, N. J., and Kirshvink, J. L.: 1997, 'Low-Latitude Glaciation in the Proterozoic Era', Nature 386, 262–266.Google Scholar
  16. Fraedrich, K., Kleidon, A., and Lunkeit, F.: 1999, 'A Green Planet Versus a Desert World: Estimating the Effect of Vegetation Extremes on the Atmosphere',J. Clim. 12, 3156–3163.Google Scholar
  17. Grassl, H.: 1981, 'The Climate at Maximum Entropy Production by Meridional Atmospheric and Oceanic Heat Fluxes', Q. J. R. Meteorol. Soc. 107, 153–166.Google Scholar
  18. Henderson-Sellers, A.: 1979, 'Clouds and the Long Term Stability of the Earth's Atmosphere and Climate', Nature 279, 786–788.Google Scholar
  19. Hitchcock, D. R. and Lovelock, J. E.: 1967, 'Life Detection by Atmospheric Analysis', Icarus 7, 149–159.Google Scholar
  20. Hoffman, P. F., Kaufman, A. J., Halverson, G. P., and Schrag, D. P.: 1998, 'ANeoproterozoic Snowball Earth', Science 281, 1342–1346.Google Scholar
  21. IPCC: 2001, Climate Change 2001- The Scientific Basis, Cambridge University Press.Google Scholar
  22. Jaynes, E. T.: 1957, 'Information Theory and Statistical Mechanics', Phys. Rev. 106, 620–630.Google Scholar
  23. Kaplan, I. R. and Bartley, J. K.: 2000, 'Global Biogeochemcial Cycles: Carbon, Sulfur, and Nitro-gen', in Ernst, W. G. (ed.), Earth Systems: Processes and Issues, Cambridge University Press, Cambridge, UK.Google Scholar
  24. Kasting, J. F.: 1993, 'Earth's Early Atmosphere', Science 259, 920–926.Google Scholar
  25. Kasting, J. F.: 2001, 'The Rise of Atmospheric Oxygen', Science 293, 819–820.Google Scholar
  26. Kasting, J. F. and Ackerman, T. P.: 1986, 'Climatic Consequences of Very High Carbon Dioxide Levels in the Earth's Early Atmosphere', Science 234, 1383–1385.Google Scholar
  27. Kirchner, J. W.: 1989, 'The Gaia Hypothesis: Can It Be Tested?', Rev. Geophys. 27, 223–235.Google Scholar
  28. Kirchner, J. W.: 2002, 'The Gaia Hypothesis: Fact, Theory, and Wishful Thinking', Clim. Change 52, 391–408.Google Scholar
  29. Kirchner, J. W.: 2003, 'The Gaia Hypothesis: Conjectures and Refutations', Clim. Change 58, 21–45.Google Scholar
  30. Kleidon, A.: 2002, 'Testing the Effect of Life on Earth's Functioning: HowGaian is the Earth System?', Clim. Change 52, 383–389.Google Scholar
  31. Kleidon, A., Fraedrich, K., and Heimann, M.: 2000, 'AGreen Planet Versus a Desert World: Estimating the Maximum Effect of Vegetation on Land Surface Climate', Clim. Change 44, 471–493.Google Scholar
  32. Kleidon, A. and Heimann, M.: 1998, 'A Method of Determining Rooting Depth from a Terrestrial Biosphere Model and its Impacts on the Global Water-and Carbon Cycle', Global Change Biol. 4, 275–286.Google Scholar
  33. Kleidon, A., Fraedrich, K., Kunz, T., and Lunkeit, F.: 2003, 'The Atmospheric Circulation and States of Maximum Entropy Production', Geophys. Res. Lett. 30(23), 2223, doi:10.1029/2003GL018363.Google Scholar
  34. Kleidon, A. and Mooney, H. A.: 2000, 'A Global Distribution of Biodiversity Inferred from Climatic Constraints: Results from a Process-Based Modelling Study', Global Change Biol. 6, 507–523.Google Scholar
  35. Lenton, T. M.: 1998, 'Gaia and Natural Selection', Nature 394, 439–447.Google Scholar
  36. Lenton, T. M.: 2002, 'Testing Gaia: The Effect of Life on Earth's Habitability and Regulation', Clim. Change 52, 409–422.Google Scholar
  37. Lenton, T. M. and Wilkinson, D. M.: 2003, 'Developing the Gaia Theory', Clim. Change 58, 1–12.Google Scholar
  38. Lesins, G. B.: 1990, 'On the Relationship Between Radiative Entropy and Temperature Distributions', J. Atmos. Sci. 47, 795–803.Google Scholar
  39. Lesins, G. B.: 1991, 'Radiative Entropy as a Measure of Complexity', in Schneider, S. H. and Boston, P. J. (eds.), Scientists on Gaia, MIT Press, Cambridge, MA, pp. 121–127.Google Scholar
  40. Loreau, M.: 1995, 'Consumers as Maximizers of Matter and Energy Flow in Ecosystems', Am. Nat. 15, 237–240.Google Scholar
  41. Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., Hector, A., Hooper, D. U., Huston, M. A., Raffaelli, D., Schmid, B., Tilman, D., and Wardle, D. A.: 2001, 'Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges', Science 294, 804–808.Google Scholar
  42. Lorenz, E. N.: 1960, 'Generation of Available Potential Energy and the Intensity of the General Circulation', in Pfeffer, R. C. (ed.), Dynamics of Climate, Pergamon Press, Oxford, UK, pp. 86–92.Google Scholar
  43. Lorenz, R.: 2003, 'Full Steam Ahead-Probably', Science 299, 837–838.Google Scholar
  44. Lorenz, R. D.: 2002, 'Planets, Life and the Production of Entropy', International Journal of Astrobiology 1, 3–13.Google Scholar
  45. Lorenz, R. D., Lunine, J. I., Withers, P. G., and McKay, C. P.: 2001, 'Titan, Mars and Earth: Entropy Production by Latitudinal Heat Transport', Geophys. Res. Lett. 28, 415–418.Google Scholar
  46. Lotka, A. J.: 1922a, 'Contribution to the Energetics of Evolution', Proc. Natl. Acad. Sci. U.S.A. 8, 147–151.Google Scholar
  47. Lotka, A. J.: 1922b, 'Natural Selection as a Physical Principle', Proc. Nat. Acad. Sci. U.S.A. 8, 151–154.Google Scholar
  48. Lotka, A. J.: 1925, 'Elements of Physical Biology', Williams and Wilkins, Baltimore.Google Scholar
  49. Lovelock, J. E.: 1965, 'A Physical Basis for Life Detection Experiments', Nature 207, 568–570.Google Scholar
  50. Lovelock, J. E.: 1972a, 'Gaia as Seen Through the Atmosphere', Atmos. Environ. 6, 579–580.Google Scholar
  51. Lovelock, J. E.: 1972b, Gaia: A New Look at Life on Earth', Oxford University Press, Oxford.Google Scholar
  52. Lovelock, J. E.: 1989, 'Geophysiology, The Science of Gaia', Rev. Geophys. 27, 215–222.Google Scholar
  53. Lovelock, J. E.: 2003, 'Gaia and Emergence-A Response to Kirchner and Volk', Clim. Change 57, 1–3.Google Scholar
  54. Lovelock, J. E. and Margulis, L.: 1974, 'Atmospheric Homeostasis by and for the Biosphere: The Gaia Hypothesis', Tellus 26, 2–10.Google Scholar
  55. Lovelock, J. E. and Whitfield, M.: 1982, 'Life-Span of the Biosphere', Nature 296, 561–563.Google Scholar
  56. Malkus, W. V. R.: 1954, 'The Heat Transport and Spectrum of Thermal Turbulence', Proc. R. Soc. Lond. 225, 196–212.Google Scholar
  57. McGrady-Steed, J., Harris, P. M., and Morin, P. J.: 1997, 'Biodiversity Regulates Ecosystem Pre-dictability', Nature 390, 162–165.Google Scholar
  58. Monsi, M. and Saeki, T.: 1953, 'Ü den Lichtfaktor in den Pflanzengesellschaften und seine Be-deutung für die Stoffproduktion', Jpn. J. Bot. 14, 22–52.Google Scholar
  59. Monteith, J. L.: 1977, 'Climate and the Efficiency of Crop Production in Britain', Proc. R. Soc. Lond. 281, 277–294.Google Scholar
  60. Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H., and Woodfin, R. M.: 1994, 'Declining Biodiversity Can Alter the Performance of Ecosystems', Nature 368, 734–737.Google Scholar
  61. Nisbet, E. G. and Sleep, N. H.: 2001, 'The Habitat and Nature of Early Life', Nature 409, 1083–1091.Google Scholar
  62. Odum, E. P.: 1969, 'The Strategy of Ecosystem Development', Science 164, 262–270.Google Scholar
  63. Odum, H. T.: 1988, 'Self-Organization, Transformity, and Information', Science 242, 1132–1139.Google Scholar
  64. Odum, H. T. and Odum, E. C.: 1981, Energy Basis for Man and Nature, McGraw-Hill, New York.Google Scholar
  65. Ou, H.-W.: 2001, 'Possible Bounds of the Earth's Surface Temperature: From the Perspective of a Conceptual Global-Mean Model', J. Clim. 14, 2976–2988.Google Scholar
  66. Owen, T., Cess, R. D., and Ramanathan, V.: 1979, 'Enhanced CO2 Greenhouse to Compensate for Reduced Solar Luminosity on Early Earth', Nature 277, 640–642.Google Scholar
  67. Ozawa, H. and Ohmura, A.: 1997, 'Thermodynamics of a Global-Mean State of the Atmosphere-A State of Maximum Entropy Increase',J. Clim. 10, 441–445.Google Scholar
  68. Ozawa, H., Ohmura, A., Lorenz, R. D., and Pujol, T.: 2003, 'The Second Law of Thermodynamics and the Global Climate System-A Review of the Maximum Entropy Production Principle', Rev. Geophys.,inpress.Google Scholar
  69. Pachepsky, E., Crawford, J. W., Bown, J. L., and Squire, G.: 2001, 'Towards A General Theory of Biodiversity', Nature 410, 923–926.Google Scholar
  70. Paltridge, G. W.: 1975, 'Global Dynamics and Climate-A System of Minimum Entropy Exchange', Q. J. R. Meteorol. Soc. 101, 475–484.Google Scholar
  71. Paltridge, G. W.: 1978, 'The Steady-State Format of Global Climate', Q. J. R. Meteorol. Soc. 104, 927–945.Google Scholar
  72. Paltridge, G. W.: 1979, 'Climate and Thermodynamic Systems of Maximum Dissipation', Nature 279, 630–631.Google Scholar
  73. Paltridge, G. W.: 2001, 'A Physical Basis for a Maximum of Thermodynamic Dissipation of the Climate System', Q. J. R. Meteorol. Soc. 127, 305–313.Google Scholar
  74. Peixoto, J. P., Oort, A. H., de Almeida, M., and Tome, A.: 1991, 'Entropy Budget of the Atmosphere', J. Geophy. Res. 96(D6), 10,981-10,988.Google Scholar
  75. Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davisk, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L., Ritz, C., Saltzmank, E., and Stievenard, M.: 1999, 'Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica', Nature 399, 429–436.Google Scholar
  76. Pimm, S. L.: 1984, 'The Complexity and Stability of Ecosystems', Nature 307, 321–326.Google Scholar
  77. Prigogine, I.: 1962, Introduction to Non-equilibrium Thermodynamics,Wiley/Interscience, NewYork.Google Scholar
  78. Rodgers, C. D.: 1976, 'Minimum Entropy Exchange Principle-Reply', Q. J. Roy. Meteor. Soc. 102, 445–457.Google Scholar
  79. Rossow, W. B., Henderson-Sellers, A., and Weinrich, S. K.: 1982, 'Cloud Feedback: A Stabilizing Effect for the Early Earth?', Science 217, 1245–1247.Google Scholar
  80. Sagan, C. and Mullen, G.: 1972, 'Earth and Mars: Evolution of Atmospheres and Surface Tempera-tures', Science 177, 52–56.Google Scholar
  81. Schlesinger, W. H.: 1997, Biogeochemistry: An Analysis of Global Change, 2nd edn., Academic Press, San Diego.Google Scholar
  82. Schneider, E. D. and Kay, J. J.: 1994, 'Life As A Manifestation of the Second Law of Thermo-dynamics', Math. Comput. Model. 19, 25–48.Google Scholar
  83. Schneider, S. H.: 1972, 'Cloudiness As AGlobal Climatic Feedback Mechanism-Effects on Radiation Balance and Surface-Temperature of Variations in Cloudiness', J. Atmos. Sci. 29, 1413–1422.Google Scholar
  84. Schneider, S. H.: 1986, 'A Goddess of the Earth: The Debate on the Gaia Hypothesis', Clim. Change 8, 1–4.Google Scholar
  85. Schneider, S. H. and Boston, P. J. (eds.): 1991, Scientists on Gaia, MIT Press, Cambridge, MA.Google Scholar
  86. Schneider, S. H., Washington, W. M., and Chervin, R. M.: 1978, 'Cloudiness As A Climatic Feedback Mechanism: Effects of Cloud Amounts of Prescribed Global and Regional Surface Temperature Changes in the NCAR GCM', J. Atmos. Sci. 35, 2207–2221.Google Scholar
  87. Schrödinger, E.: 1944, What is Life ? The Physical Aspect of the Living Cell, The University Press, Cambridge, UK.Google Scholar
  88. Schwartz, M. W., Brigham, C. A., Hoeksema, J. D., Lyons, K. G., Mills, M. H., and van Mantgem, P. J.: 2000, 'Linking Biodiversity to Ecosystem Function: Implications for Conservation Ecology', Oecologia 122, 297–305.Google Scholar
  89. Schwartzman, D. W.: 1999, Life, Temperature, and the Earth: The Self-Organizing Biosphere, Columbia University Press, New York.Google Scholar
  90. Schwartzman, D. W. and Volk, T.: 1989, 'Biotic Enhancement of Weathering and the Habitability of Earth', Nature 340, 457–460.Google Scholar
  91. Schwinning, S. and Ehleringer, J. R.: 2001, 'Water Use Tradeoffs and Optimal Adaptations to Pulse-Driven Arid Ecosystems', J. Ecol. 89, 464–480.Google Scholar
  92. Sellers, W. D.: 1969, 'A Global Climate Model Based on the Energy Balance of the Earth Atmosphere System', J. Appl. Met. 8, 392–400.Google Scholar
  93. Shimokawa, S. and Ozawa, H.: 2001, 'On the Thermodynamics of the Oceanic General Circulation: Entropy Increase Rate of an Open Dissipative System and its Surroundings', Tellus 53A, 266–277.Google Scholar
  94. Shimokawa, S. and Ozawa, H.: 2002, 'On the Thermodynamics of the Oceanic General Circulation: Irreversible Transition to a State with Higher Rate of Entropy Production', Q. J. R. Meteorol. Soc. 128, 2115–2128.Google Scholar
  95. Tilman, D., Wedin, D., and Knops, J.: 1996, 'Productivity and Sustainability Influenced by Biodiversity in Grassland Ecosystems', Nature 379, 718–720.Google Scholar
  96. Ulanowicz, R. E. and Hannon, B. M.: 1987, 'Life and the production of entropy', Proc. R. Soc. Lond. B 232, 181–192.Google Scholar
  97. Vernadsky, V. I.: 1926, 'Biosfera [The biosphere]'Leningrad: Nauka', translated and reprinted in 1998, Springer Verlag, New York.Google Scholar
  98. Volk, T.: 1998, Gaia's Body: Toward A Physiology of Earth, Springer Verlag, New York.Google Scholar
  99. Volk, T.: 2002, 'Towards A Future for Gaia Theory', Clim. Change 52, 423–430.Google Scholar
  100. Volk, T.: 2003a, 'Seeing Deeper into Gaia Theory-A Reply to Lovelock's Response', Clim. Change 57, 5–7.Google Scholar
  101. Volk, T.: 2003b, 'Natural Selection, Gaia, and Inadvertent By-products: A Reply to Lenton and Wilkinson's Response', Clim. Change 58, 13–19.Google Scholar
  102. Walker, J. C., Hays, P. B., and Kasting, J. F.: 1981, 'ANegative Feedback Mechanism for the Long-term Stabilization of Earth's Surface Temperature', J. Geophys. Res. 86, 9776–9782.Google Scholar
  103. Watson, A. J. and Lovelock, J. E.: 1983, 'Biological Homeostasis of the Global Environment: The Parable of Daisyworld', Tellus 35B, 284–289.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Axel Kleidon
    • 1
  1. 1.Department of Geography and Earth System Science Interdisciplinary CenterU.S.A

Personalised recommendations