Climatic Change

, Volume 65, Issue 1–2, pp 11–38 | Cite as

Nonlinearities, Feedbacks and Critical Thresholds within the Earth's Climate System

  • José A. Rial
  • Roger A. PielkeSr.
  • Martin Beniston
  • Martin Claussen
  • Josep Canadell
  • Peter Cox
  • Hermann Held
  • Nathalie de Noblet-Ducoudré
  • Ronald Prinn
  • James F. Reynolds
  • José D. Salas

Abstract

The Earth's climate system is highly nonlinear: inputs and outputs are not proportional, change is often episodic and abrupt, rather than slow and gradual, and multiple equilibria are the norm. While this is widely accepted, there is a relatively poor understanding of the different types of nonlinearities, how they manifest under various conditions, and whether they reflect a climate system driven by astronomical forcings, by internal feedbacks, or by a combination of both. In this paper, after a brief tutorial on the basics of climate nonlinearity, we provide a number of illustrative examples and highlight key mechanisms that give rise to nonlinear behavior, address scale and methodological issues, suggest a robust alternative to prediction that is based on using integrated assessments within the framework of vulnerability studies and, lastly, recommend a number of research priorities and the establishment of education programs in Earth Systems Science. It is imperative that the Earth's climate system research community embraces this nonlinear paradigm if we are to move forward in the assessment of the human influence on climate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alley, R. B., Clark, P. U., Keiwin, L. D., and Webb, R. S.: 1999,‘Making Sense of Millennial Scale Climate Change’, in Clark, P. U., Webb, R. S., and Keiwin, L. D. (eds.), Mechanisms of Global Climate Change at Millennial Time Scales, Amer. Geophys. Union, Geophys. Monogr . 112, 385–394.Google Scholar
  2. Alley, R. B., Marotzke, J., Nordhaus, W. D., Overpeck, J. T., Peteet, D. M., Pielke Jr., R. A., Pier-Rehumbert, R. T., Rhines, P. B., Stocker, T. F., Talley, L. D., and Wallace, J. M.: 2003, ‘Abrupt Climate Change’, Science 299, 2005–2010.Google Scholar
  3. Aspen Global Change Institute: 1998, ‘Elements of Change 1997: Session One: Scaling from Site-Specific Observations to Global Model Grids’.Google Scholar
  4. Beniston, M.: 1997, ‘Variations of Snow Depth and Duration in the Swiss Alps over the Last 50 Years: Links to Changes in Large-Scale Climatic Forcings’, Clim. Change 36, 281–300.Google Scholar
  5. Beniston, M. and Jungo, P.: 2002, ‘Shifts in the Distributions of Pressure, Temperature and Moisture and Changes in the Typical Weather Patterns in the Alpine Region in Response to the Behavior of the North Atlantic Oscillation’, Theor. Appl. Climatol. 71, 29–42.Google Scholar
  6. Berger, A. and Loutre, M. F.: 1991, ‘Insolation Values for the Climate of the Last 10 Million of Years’, Quat. Sci. Rev. 10(4), 297–317.Google Scholar
  7. Betts, R. A.: 2000, ‘Offset of the Potential Carbon Sink from Boreal Forestation by Decreases in Albedo’, Nature 408, 187–190.Google Scholar
  8. Bonan, G. B., Pollard, D., and Thompson, S. L.: 1992, ‘Effects of Boreal Forest Vegetation on Global Climate’, Nature 359, 716–718.Google Scholar
  9. Braconnot, P., Joussaume, S., Marti, O., and de Noblet-Ducoudre, N.: 1999, ‘Synergistic Feedbacks from Ocean and Vegetation on the African Monsoon Response to Mid-Holocene Insolation’, Geophys. Res. Lett. 26, 2481–2484.Google Scholar
  10. Brovkin, V., Claussen, M., Petoukhov, V., and Ganopolski, A.: 1998, ‘On the Stability of the Atmosphere-Vegetation System in the Sahara/Sahel Region’, J. Geophys. Res. 103, 31613–31624.Google Scholar
  11. Buffett, B. A.: 2000, ‘Clathrate Hydrates’, Ann. Rev. Earth Planet. Sci. 28, 477–508.Google Scholar
  12. Chase, T. N., Pielke, R. A., Kittel, T. G. F., Nemani, R. R., and Running, S. W.: 2000, ‘Simulated Impacts of Historical Land Cover Changes on Global Climate’, Clim. Dyn. 16, 93–105.Google Scholar
  13. Cherney, J. and Stone, P. H.:1975, ‘Drought in the Sahara: A Biogeophysical Feedback Mechanism’, Science 187, 434–435.Google Scholar
  14. Cheng, W. X.: 1999, ‘Rhizosphere Feedbacks in Elevated CO2’, Tree Physiol. 19, 313–320.Google Scholar
  15. Clark, P. U., Alley, R. B., and Pollard, D.: 1999, ‘Northern Hemisphere Ice Sheet Influences on Global Climate Change’, Science 286, 1104–1111.Google Scholar
  16. Clark, P. U., Pisias, N. G., Stocker, T. F., and Weaver, A. J.: 2002, ‘The Role of the Thermohaline Circulation in Abrupt Climate Change, Nature 415, 863–869.Google Scholar
  17. Claussen, M.: 1997, ‘Modelling Biogeophysical Feedback in the African and Indian Monsoon Region’, Clim. Dyn. 13, 247–257.Google Scholar
  18. Claussen, M.: 2001, ‘Earth System Models’, in Ehlers, E. and Krafft, T. (eds.), Understanding the Earth System: Compartments, Processes and Interactions, Springer-Verlag, Heidelberg, pp. 145–162.Google Scholar
  19. Claussen, M. and Gayler, V.: 1997, ‘The Greening of Sahara during the Mid-Holocene: Results of an Interactive Atmosphere-Biome Model’, Global Ecol. Biogeog. Lett. 6, 369–377.Google Scholar
  20. Claussen, M., Kubatzki, C., Brovkin, V., Ganopolski, A., Hoelzmann, P., and Pachur, H. J.: 1999, ‘Simulation of an Abrupt Change in Saharan Vegetation at the End of the Mid-Holocene’, Geophys. Res. Lett. 26, 2037–2040.Google Scholar
  21. Claussen, M., Mysak, L. A., Weaver, A. J., Crucifix, M., Fichefet, T., Loutre, M.-F., Weber, S. L., Alcamo, J., Alexeev, V. A., Berger, A., Calov, R., Ganopolski, A., Goosse, H., Lohmann, G., Lunkeit, F., Mokhov, I. I., Petoukhov, V., Stone, P., and Wang, Z.: 2002, ‘Earth Systems Models of Intermediate Complexity: Closing the Gap in the Spectrum of Climate System Models’, Clim. Dyn. 18, 579–586.Google Scholar
  22. Cowan, G. A., Pines, D., and Meltzer, D.: 1999, Complexity,Metaphors, Models and Reality, Perseus Books, Santa Fe Institute.Google Scholar
  23. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.: 2000, ‘Acceleration of Global Warming Due to Carbon-Cycle Feedbacks in a Coupled Climate Model’, Nature 408, 184–187.Google Scholar
  24. Cronin, T. M. (1999): Principles of Paleoclimatology, Columbia U. Press, New York.Google Scholar
  25. DeConto, R. and Pollard, D.: 2003, ‘Rapid Cenozoic Glaciation of Antarctica Induced by Declining Atmospheric CO2’, Nature 421, 245–249. deMenocal, P. B., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., and Yarusinsky, M.: 2000, ‘Abrupt Onset and Termination of the African Humid Period: Rapid Climate Response to Gradual Insolation Forcing’, Quat. Sci. Rev. 19, 347–361. de Noblet-Ducoudre, N. and Claussen, M.: 2001, ‘Mid-Holocene Greening of the Sahara: First Results of the GAIM6000 Year BP Experiment with Two Asynchronously Coupled Atmosphere/Biome Models’, Clim. Dyn. 16, 643–659.Google Scholar
  26. Doherty, R., Kutzbach, J., Foley, J., and Pollard, D.: 2000, ‘Fully Coupled Climate/Dynamical Vegetation Model Simulations over Northern Africa during the Mid-Holocene’, Clim. Dyn. 16, 561–573.Google Scholar
  27. Eastman, J. L., Coughenour, M. B., and Pielke, R. A. Sr.: 2001a, ‘The Effects of CO2 and Landscape Change Using a Coupled Plant and Meteorological Model’, Global Change Biol. 7, 797–815.Google Scholar
  28. Eastman, J. L., Coughenour, M. B., and Pielke, R. A. Sr.: 2001b, ‘Does Grazing Affect Regional Climate’, J. Hydrometeor. 2, 243–253.Google Scholar
  29. Foley, J., Kutzbach, J. E., Coe, M. T., and Levis, S.: 1994, ‘Feedbacks between Climate and Boreal Forests during the Holocene Epoch’, Nature 371, 52–54.Google Scholar
  30. Gallagher, R. and Appenzeller, T.: 1999, ‘Beyond Reductionism: Introduction to Special Section on Complex Systems’, Science 284, 79–109.Google Scholar
  31. Ganopolski, A., Kubatzki, C., Claussen, M., Brovkin, V., and Petoukhov, V.: 1998, ‘The Influence of Vegetation-Atmosphere-Ocean Interaction on Climate during the Mid-Holocene’, Science 280, 1916–1919.Google Scholar
  32. Ganopolski, A. and Rahmstorf, S.: 2001, ‘Rapid Changes of Glacial Climate Simulated in a Coupled Climate Model’, Nature 409, 153–158.Google Scholar
  33. Ghil, M.: 1994, ‘Cryothermodyamics: The Chaotic Dynamics of Paleoclimate’, Physica D 77, 130–159.Google Scholar
  34. Gill, R. A., Polley, H.W., Johnson, L. J., Maherali, H., and Jackson, R.: 2002, ‘Nonlinear Grasslands Responses to Past and Future Atmospheric CO2’, Nature 417, 279–282.Google Scholar
  35. Goldenfeld, N. and Kadanoff, L. P.: 1999, ‘Simple Lessons from Complexity’, Science 284, 87–89.Google Scholar
  36. GRIP Project Members: 1993, ‘Climate Instability during the Last Interglacial Period Recorded in the GRIP Ice Core’, Nature 364, 203–207.Google Scholar
  37. Homes, K. J. and Ellisa, J. H.: 1999, ‘An Integrated Assessment Modeling Framework for Assessing Primary and Secondary Impacts from Carbon Dioxide Stabilization Scenarios’, Environ. Model. Assess. 4, 45–63.Google Scholar
  38. Hurrell, J. W.: 1995, ‘Decadal Trends in the North Atlantic Oscillation Regional Temperatures and Precipitation’, Science 269, 676–679Google Scholar
  39. Imbrie, J., Berger, A., Boyle, E. A., Clemens, S. C., Duffy, A., Howard, W. R., Kukla, G., Kutzbach, J., Martinson, D. G., McIntyre, A., Mix, A. C., Molfino, B., Morley, J. J., Peterson, L. C., Pisias, N. G., Prell, W. L., Raymo, M. E., Shackleton, N. J., and Toggweiler, J. R.: 1993, ‘On the Structure and Origin of Major Glaciation Cycles 2. The 100,000-Year Cycle’, Paleoceanography 8(6), 699–735.Google Scholar
  40. Joussaume, S., Taylor, K. E., Braconnot, P., Mitchell, J. F. B., Kutzbach, J. E., Harrison, S. P., Prentice, I. C., Broccoli, A. J., Abe-Ouchi, A., Bartlein, P. J., Bonfiels, C., Dong, B., Guiot, J., Herterich, K., Hewit, C. D., Jolly, D., Kim, J. W., Kislov, A., Kitoh, A., Loutre, M. F., Masson, V., McAvaney, B., McFarlane, N., deNoblet, N., Peltier, W. R., P eterschmitt, J. Y., Pollard, D., Rind, D., Royer, J. F., Schlesinger, M. E., Syktus, J., Thompson, S., Valdes, P., Vettoretti, G., Webb, R. S., and Wyputta, U.: 1999, ‘Monsoon Changes for 6000 Years Ago: Results of 18 Simulations from the Paleoclimate Modeling Intercomparison Project (PMIP)’, Geophys. Res. Lett. 26, 859–862.Google Scholar
  41. Kabat, P., Claussen, M., Dirmeyer, P. A., Gash, J. H. C., Bravo de Guenni, L., Meybeck, M., Pielke Sr., R. A., Vörösmarty, C. J., Hutjes, R. W. A., and Lütkemeier, S. (eds.): 2003, Vegetation, Water, Humans and the Climate: A New Perspective on an Interactive System, Springer, Berlin, Heidelberg, New York, approx. 550 pp., in press.Google Scholar
  42. Kaplan, D. and Glass, L.: 1995, Understanding Nonlinear Dynamics, Springer-Verlag, New York.Google Scholar
  43. Kim, Y. C. and Powers, E. J.: 1978, ‘Digital Bispectral Analysis of Self-Excited Fluctuation Spectra’, Phys. Fluids 21, 1452–1453.Google Scholar
  44. Körner, C.: 2000, ‘Biosphere Responses to CO2 Enrichment’, Ecol. Appl. 10, 1590–1619.Google Scholar
  45. Kutzbach, J. E. and Guetter, P. J.: 1986, ‘The Influence of Changing Orbital Parameters and Surface Boundary Conditions on Climate Simulations for the Past 18,000 Years’, J. Atmos. Sci. 43, 1726–1759.Google Scholar
  46. Lawton, J. H.: 2001, ‘Earth System Science’, Science 292, 1965.Google Scholar
  47. Lamb, H. H.: 1966, ‘Climate in the 1960s’, Geogr. J. 132, 183–212.Google Scholar
  48. Lorenz, E. N.: 1963, ‘Deterministic Nonperiodic Flow’, J. Atmos. Sci. 20, 130–141Google Scholar
  49. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C.: 1997, ‘A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production’, Bull. Amer. Meteorol. Soc. 78, 1069–1079.Google Scholar
  50. May, R. M.: 1976, ‘Simple Mathematical Models with Very Complicated Dynamical Behavior’, Nature 261, 459–467.Google Scholar
  51. McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J., and White, K. S. (eds.): 2001, Climate Change 2001: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge.Google Scholar
  52. Mudelsee, M. and Schultz, M.: 1997, ‘The Mid-Pleistocene Climate Transition: Onset of the 100 ka Cycle Lags Ice Volume Build-up by 280 ka’, Earth Planet. Sci. Lett. 151, 117–123.Google Scholar
  53. Nobes, D. C., Bloomer, S. F., Mienert, J., and Westall, F.: 1991, ‘Milankovitch Cycles and Nonlinear Response in the Quaternary Record in the Atlantic Sector of the South Oceans’, Proceedings ODP Scientific Results 114, 551–576.Google Scholar
  54. Paillard, D.: 2001, ‘Glacial Hiccups’, Nature 409, 147–148.Google Scholar
  55. Petit, J. R., Jouzel, J., Raynaud, D., and Barkov, N. I.: 1999, ‘Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica’, Nature 399, 429–436.Google Scholar
  56. Pielke Sr., R. A.: 2001a, ‘Earth System Modeling–An Integrated Assessment Tool for Environmental Studies’, in Matsuno, T. and Kida, H. (eds.), Present and Future of Modeling Global Environmental Change: Toward Integrated Modeling, Terra Scientific Publishing Company, Tokyo, Japan, pp. 311–337.Google Scholar
  57. Pielke Sr., R. A.: 2001b, ‘Influence of the Spatial Distribution of Vegetation and Soils on the Prediction of Cumulus Convective Rainfall’, Rev. Geophys. 39, 151–177.Google Scholar
  58. Pielke Sr., R. A.: 2001c, ‘Carbon Sequestration: The Need for an Integrated Climate System Approach’, Bull. Amer. Meteor. Soc. 82, 2021.Google Scholar
  59. Pielke Sr., R. A., M arland, G., Betts, R. A., Chase, T. N., Eastman, J. L., Niles, J. O., Niyogi, D., and Running, S.: 2002, ‘The Influence of Land-Use Change and Landscape Dynamics on the Climate System-Relevance to Climate Change Policy beyond the Radiative Effect of Greenhouse Gases’, Phil. Trans. A. Special Theme Issue 360, 1705–1719.Google Scholar
  60. Pisias, N. G., Mix, A. C., and Zahn, R.: 1990, ‘Nonlinear Response in the Global Climate System: Evidence from Benthic Oxygen Isotopic Record in Core RC13–110’, Paleoceanography 5(2), 147–160.Google Scholar
  61. Prentice, I. C., Jolly, D., and BIOME 6000 members: 2000, ‘Mid-Holocene and Glacial-Maximum Vegetation Geography of the Northern Continents and Africa’, J. Biogeogr. 27, 507–519.Google Scholar
  62. Prather, M. J.: 1996, ‘Natural Modes and Time Scales in Atmospheric Chemistry: Theory, GWPs for CH4 and CO, and Runaway Growth’, Geophys. Res. Lett. 23, 2597–2600.Google Scholar
  63. Prinn, R. G., Jacoby, H. D., Sokolov, A., Wang, C., Xiao, X., Yang, Z., Eckaus, R. S., Stone, P. H., Ellerman, A. D., Melillo, J. M., Fitzmaurice, J., Kicklighter, D. W., Holian, G. L., and Liu, Y.: 1999, ‘Integrated Global System Model for Climate Policy Assessment: Feedbacks and Sensitivity Studies’, Clim. Change 41, 469–546.Google Scholar
  64. Prinn, R. G., Huang, J., Weiss, R. F., Cunnold, D. M., Fraser, P. J., Simmonds, P. G., Harth, C., Salameh, P., O'Doherty, S., Wang, R. H. J., Porter, L., and Miller, B. R.: 2001, ‘Evidence for Substantial Variations of Atmospheric Hydroxyl Radicals in the Last Two Decades’, Science 292, 1882–1888.Google Scholar
  65. Rahmstorf, S.: 2000, ‘The Thermohaline Ocean Circulation: A System with Dangerous Thresholds?’, Clim. Change 46, 247–256.Google Scholar
  66. Rahmstorf, S.: 2001, ‘Abrupt Climate Change’, in Steele, J., Thorpe, S., and Turekian, K. (eds.), Encyclopedia of Ocean Sciences, Academic Press, London, pp. 1–6.Google Scholar
  67. Raymo, M. E.: 1997, ‘The Timing of Major Climate Terminations’, Paleoceanography 12, 577–585.Google Scholar
  68. Rial, J. A.: 1999, ‘Pacemaking the Ice Ages by Frequency Modulation of Earth's Orbital Eccentricity’, Science 285, 564–568.Google Scholar
  69. Rial, J. A.: 2003, ‘Abrupt Climate Change: Chaos and Order at Orbital and Millennial Scales’, Glob.Plan. Change, in press.Google Scholar
  70. Rind, D.: 1999, ‘Complexity and Climate’, Science 284, 105–107.Google Scholar
  71. Sachs, J. P. and Lehman, S.: 1999, ‘Subtropical North Atlantic Temperatures 60,000 to 30,000 Years Ago, Science 286, 756–759.Google Scholar
  72. Salas, J. D. and Pielke Sr., R. A.: 2002, ‘Stochastic Characteristics and Modeling of Hydroclimatic Processes’, Chapter 32 in Potter, T. and Colman, B. (eds.), Handbook of Weather, Climate, and Water, John Wiley and Sons, in press.Google Scholar
  73. Salas, J. D., Obeysekera, J. T. B., and Boes, D. C.: 1981, in Singh, V. P. (ed.), Modeling of the Equatorial Lakes Outflows, in Statistical Analysis of Rainfall and Runoff,Water Resources Publications, Littleton, CO, pp. 431–440.Google Scholar
  74. Sarewitz, D., Pielke Jr., R. A., and Byerly Jr., R.: 2000, Prediction, Science, Decision Making and the Future of Nature, Island Press, Washington, DC, p. 405.Google Scholar
  75. Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J. (et al.): 1999, ‘Simulated Response of the Ocean Carbon Cycle to Anthropogenic Climate Warming’, Nature 402, 245–249.Google Scholar
  76. Schellnhuber, H. J.: 1999, ‘Earth System Analysis and the Second Copernican Revolution’, Nature 402, C19–C26.Google Scholar
  77. Schimel, D., Melillo, J., Tian, H. Q., McGuire, A. D., Kicklighter, D., Kittel, T., Rosenblum, N., Running, S., Thorton, P., Ojima, D., Parton, W., Kelly, R., Sykes, M., Neilson, R., and Rizzo, B.: 2000, ‘Contribution of Increasing CO2 and Climate to Carbon Storage by Ecosystems in the United States’, Science 287, 2004–2006.Google Scholar
  78. Stocker, T. F. and Schmittner, A.: 1997, ‘Influence of CO2 Emission Rates on the Stability of the Thermohaline Circulation’, Science 388, 862–865.Google Scholar
  79. Sveinsson, O. G., Salas, J. D., Boes, D. C., and Pielke Sr., R. A.: 2003, ‘Modeling of Long Term Variability of Climatic and Hydrologic Processes’, J. Hydrometeor. 4, 489–505.Google Scholar
  80. Thompson, A. M. and Cicerone, R. J.: 1986, ‘Possible Perturbations to Atmospheric CO, CH4, and OH’, J. Geophys. Res. 91, 10853–10864.Google Scholar
  81. Tziperman, E., Stone, L., Cane, M. A., and Jarosh, H.: 1994, ‘El Niño Chaos: Overlapping of Resonances between the Seasonal Cycle and the Pacific Ocean-Atmosphere Oscillator’, Science 264, 72–74.Google Scholar
  82. Vitusenko, P. M., Mooney, H. A., Lubchenco, J., and Melillo, J. M.: 1997, ‘Human Domination of Earth's Ecosystems’, Science 277, 494–499.Google Scholar
  83. Vörösmarty, C. J. P., Green, P., Salisbury, J., and Lammers, R. B.: 2000, ‘Global Water Resources: Vulnerability from Climate Change Acid Population Growth’, Science 289, 284–288.Google Scholar
  84. Watson, A. J. and Lovelock, J. E.: 1984, ‘Biological Homeostasis of the Global Rnvironment: The Parable of Daisyworld’, Tellus 35, 284–289.Google Scholar
  85. Werth, D. and Avissar, R.: 2002, ‘The Local and Global Effects of Amazon Deforestation’, J.Geophys. Res. 107, D20, 8087, doi: 10.1029/2001JD000717.Google Scholar
  86. Zhao,M., Pitman, A. J., and Chase, T.: 2000, ‘The Impact of Land Cover Change on the Atmospheric Circulation’, Clim. Dyn. 17, 467–477.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • José A. Rial
    • 1
  • Roger A. PielkeSr.
    • 2
  • Martin Beniston
    • 3
  • Martin Claussen
    • 4
  • Josep Canadell
    • 5
  • Peter Cox
    • 6
  • Hermann Held
    • 4
  • Nathalie de Noblet-Ducoudré
    • 7
  • Ronald Prinn
    • 8
  • James F. Reynolds
    • 9
  • José D. Salas
    • 10
  1. 1.Wave Propagation Laboratory, Department of Geological Sciences CB#3315University of North CarolinaChapel HillU.S.A.
  2. 2.Atmospheric Science Dept.Colorado State UniversityFort CollinsU.S.A
  3. 3.Dept. of GeosciencesGeography, Univ. of FribourgFribourgSwitzerland
  4. 4.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  5. 5.GCP-IPO, Earth Observation CentreCSIROCanberraAustralia
  6. 6.Met Office Hadley CentreBerkshireU.K
  7. 7.DSM/LSCELaboratoire des Sciences du Climat et de l'Environnement, Unité mixte de Recherche CEA-CNRSGif-sur-YvetteFrance
  8. 8.Dept. of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeU.S.A
  9. 9.Department of Biology and Nicholas School of the Environmental and Earth Sciences, Phytotron Bldg., Science Dr.Duke UniversityDurhamU.S.A
  10. 10.Dept. of Civil EngineeringColorado State UniversityFort CollinsU.S.A

Personalised recommendations