Climatic Change

, Volume 61, Issue 3, pp 261–293 | Cite as

The Anthropogenic Greenhouse Era Began Thousands of Years Ago

  • William F. Ruddiman


The anthropogenic era is generally thought to have begun 150 to 200 years ago, when the industrial revolution began producing CO2 andCH4 at rates sufficient to alter their compositions in the atmosphere. A different hypothesis is posed here: anthropogenic emissions of these gases first altered atmospheric concentrations thousands of years ago. This hypothesis is based on three arguments. (1) Cyclic variations in CO2 andCH4 driven by Earth-orbital changes during the last 350,000 years predict decreases throughout the Holocene, but the CO2 trend began ananomalous increase 8000 years ago, and the CH4 trend did so 5000 years ago.(2) Published explanations for these mid- to late-Holocene gas increases basedon natural forcing can be rejected based on paleoclimatic evidence. (3) A wide array of archeological, cultural, historical and geologic evidence points to viable explanations tied to anthropogenic changes resulting from early agriculture in Eurasia, including the start of forest clearance by 8000 years ago and of rice irrigation by 5000 years ago. In recent millennia, the estimated warming caused by these early gas emissions reached a global-mean value of ∼ 0.8 °C and roughly 2 °C at high latitudes, large enough to have stopped a glaciation of northeastern Canada predicted by two kinds of climatic models. CO2 oscillations of ∼ 10 ppm in the last 1000 years are toolarge to be explained by external (solar-volcanic) forcing, but they can be explained by outbreaks of bubonic plague that caused historically documented farm abandonment in western Eurasia. Forest regrowth on abandoned farms sequestered enough carbon to account for the observed CO2decreases. Plague-driven CO2 changes were also a significant causal factor in temperature changes during the Little Ice Age (1300–1900 AD).


Holocene Eurasia Plague Anthropogenic Emission Anthropogenic Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. van Andel, T. H., Zangger, E., and Demitrack, A.: 1990, ‘Land Use and Soil Erosion in Prehistoric and Historical Greece’, J. Field Archeol. 7, 389.Google Scholar
  2. Andrews, J. T., Davis, P. T., and Wright, C.: 1976, ‘Little Ice Age Permanent Snowcover in the Eastern Canadian Arctic. Extent Mapped from LANDSAT–1 Imagery’, Geogr. Ann. 58A, 71.Google Scholar
  3. Bard, E., Raisbeck, G., Yiou, F., and Jouzel, J.: 2000, ‘Solar Irradiance Changes during the Past 1200 Years Based on Cosmogenic Nuclides’, Tellus 52B, 985.Google Scholar
  4. Berger, A., Gallee, H., Fichefet, T., Marsiat, I., and Tricot, C.: 1990, ‘Testing the Astronomical Theory with a Coupled Climate–Ice–Sheet Model’, Palaeogeogr. Palaeoclimatol. Palaeoecol. 89, 125.Google Scholar
  5. Berger, A. and Loutre, M.–F.: 1996, ‘Modeling the Climate Response to Astronomical and CO2 Forcings’, Geophys. Extern., Climat et Envir., C. R. Acad. Sci. Paris 323 (IIa) 1.Google Scholar
  6. Blunier, T., Chappellaz, J., Schwander, J., Stauffer, J., and Raynaud, D.: 1995, ‘Variations in Atmospheric Methane Concentration during the Holocene Epoch’, Nature 374, 46.Google Scholar
  7. Bray, R. S.: 1996, Armies of the Pestilence, Barnes and Noble, N.Y.Google Scholar
  8. Broecker, W. S., Clark, E., McCorckle, D. C., Peng, T.–H., Hajdas, I., and Bonani, G.: 1999, ‘Evidence for a Reduction in the Carbonate Ion Content of the Deep Sea during the Course of the Holocene’, Paleoceanogr. 3, 317.Google Scholar
  9. Brook, E. J., Harder, S., Severinghaus, J., Steig, E., and Sucker, C. M.: 2000, ‘On the Origin and Timing of Rapid Changes in Atmospheric Methane during the Last Glacial Period’, Global Biogeochem. Cycles 14, 559.Google Scholar
  10. Brook, E. J., Sowers, T., and Orchado, J.: 1996, ‘Rapid Variations in Atmospheric Methane Concentration during the Past 110,000 Years’, Science 273, 1087.Google Scholar
  11. Cartwright, F. E.: 1991, Disease and History, Dorsett Press, NY.Google Scholar
  12. Chang, T.–T.: 1976, ‘The Rice Cultures’, Phil. Trans. Royal Soc. London, B 275, 143.Google Scholar
  13. Chappellaz, J., Barnola, J.–M., Raynaud, D., Korotkevitch, Y. S., and Lorius, C.: 1990, ‘Atmospheric CH4 Record over the Last Climatic Cycle Revealed by the Vostok Ice Core’, Nature 345, 127.Google Scholar
  14. Chappelaz, J., Blunier, T., Kints, S., Dallenbach, A., Barnola, J.–M., Schwander, J., Raynaud, D., and Stauffer, B.: 1997, ‘Change in the Atmospheric CH4 Gradient between Greenland and Antarctica during the Holocene’, J. Geophys. Res. 102, 15987.Google Scholar
  15. Charlson, R. J., Schwarz, S.E.,Hales, J.M., Cess, R.D., Coakley, J. A., Hansen, J. E., and Hoffman, D. J.: 1992, ‘Climate Forcing by Anthropogenic Aerosols’, Science 255, 423.Google Scholar
  16. COHMAP Project Members: 1988, ‘Climatic Changes of the Last 18000 Years: observations and model simulations’, Science 241, 1043.Google Scholar
  17. Crowley, T. J.: 2000, ‘Causes of Climatic Change in the Last 1000 Years’, Science 289, 270.Google Scholar
  18. Crutzen, P. I. and Stoermer, E. F.: 2000, ‘The “Anthropocene”’, IGBP Newsletter 41, 12.Google Scholar
  19. Diamond, J.: 1997, Guns, Germs, and Steel, W. W. Norton, NY.Google Scholar
  20. Djevsky, N.: 1980, ‘The Urbanization of Eastern Europe’, in Sherratt, A. (ed.), Cambridge Encyclopedia of Archeology, Cambridge Univ. Press, Cambridge, 314 pp.Google Scholar
  21. Etheridge, D. M., Steele, I. P., Langenfields, R. L., Francey, R. J., Barnola, J.–M., and Morgan, V. I.: 1996, ‘Natural and Anthropogenic Changes in Atmospheric CO2 over the Last 1000 Years from Air in Antarctic Ice and Firn’, J. Geophys. Res. 101, 4115.Google Scholar
  22. Fairservis, W. A. Jr.: 1971, The Roots of Ancient India, MacMillan, NY.Google Scholar
  23. Foley, J. A.: 1994, ‘The Sensitivity of the Terrestrial Biosphere to Climatic Change: A Simulation of the Middle Holocene’, Global Biogeochem. Cycles 8, 505.Google Scholar
  24. Gerber, S., Joos, F., Brugger, P., Stocker, T. F., Mann, M. E., Sitch, S., and Scholze, M.: 2003, ‘Constraining Temperature Variations over the Last Millennium by Comparing Simulated and Observed Atmospheric CO2’, Clim. Dyn. 20, 281.Google Scholar
  25. Glover, I. C. and Higham, C. F. W.: 1996, ‘New Evidence for Early Rice Cultivation in South, Southeast, and East Asia’, in Harris, D. R. (ed.), The Origins and Spread of Agriculture and Pastorals in Eurasia, Cambridge Univ. Press, London, 413 pp.Google Scholar
  26. Hansen, J. E., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I., Ruedy, K., and Lerner, J.: 1984, ‘Climate Sensitivity; Analysis of Feedback Mechanisms’, Amer. Geophys. Union, Monogr. Ser. 29, 130.Google Scholar
  27. Harrison, S. P., Jolly, D., Laarif, F., Abe–Ouchi, A., Dong, B., Herterich, K., Hewitt, C., Joussaume, S., Kutzbach, J. E., Mitchell, J., de Noblet, N., and Valdes, P.: 1998, ‘Intercomparison of Simu292 WILLIAM F. RUDDIMAN lated Global Vegetation Distributions in Response to 6 Kyr BP Orbital Forcing’, J. Climate 11, 2721.Google Scholar
  28. Hays, J. D., Imbrie, J. I, and Shackleton, N. J.: 1976, ‘Variations in the Earth's Orbit: Pacemaker of the Ice Ages’, Science 194, 1121.Google Scholar
  29. Holdren, J. P. and Erlich, P. R.: 1974, ‘Human Population and the Global Environment’, Amer. Scientist 62, 282.Google Scholar
  30. Houghton, R. A.: 1999, ‘The Annual Net Flux of Carbon to the Atmosphere from Changes in Land Use 1850–1990’, Tellus 51B, 298.Google Scholar
  31. Houghton, R. A.: 2000, ‘Emissions of Carbon from Land–Use Change’, in Wigley, T. M. L. and Rasmusssen, C. (eds.), The Carbon Cycle, Cambridge Univ. Press, Cambridge, U.K.Google Scholar
  32. Hudson, C.: 1976, Southeastern Indians, Univ. Tenn. Press, Knoxville.Google Scholar
  33. Hughes, J. D.: 1975, Ecology in Ancient Civilizations, Univ. New Mexico Press, Albequerque.Google Scholar
  34. Huntley, B. and Birks, H. J. B.: 1983, An Atlas of Past and Present Pollen Maps for Europe: 0–13000 Years Ago, Cambridge Univ. Press, Cambridge.Google Scholar
  35. Imbrie, J. and Imbrie, J. Z.: 1980, ‘Modeling the Climatic Response to Orbital Variations’, Science 207, 943.Google Scholar
  36. Imbrie, J. et al.: 1984, ‘The Orbital Theory of Pleistocene Climate: Support from a Revised Chronology of the Marine δ 18O Record’, in Berger, A. L. et al. (eds.), Milankovitch and Climate, Part I, D. Reidel Publ., 269 pp.Google Scholar
  37. Indermuhle, A., Stocker, T. F, Joos, F., Fischer, H., Smith, H. J., Wahlen, M., Deck, B., Masttroianni, D., Blunier, T., Meyer, R., and Stauffer, B.: 1999, ‘Holocene Carbon–Cycle Dynamics Based on CO2 Trapped in Ice at Taylor Dome, Antarctica’, Nature 398, 121.Google Scholar
  38. Intergovernmental Report on Climate Change: 2001, ‘Third Assessment of the IPCC’, Cambridge Univ. Press, Cambridge, U.K.Google Scholar
  39. Jouzel, J., Barkov, N. I., Barnola, J. M., Bender, M., Chappellaz, J., Genthon, C., Kotlyakov, V. M., Lipenkov, V., Lorius, C., Petit, J. R., Raynaud, D., Raisbeck, G., Ritz, C., Sowers, T., Stievenard, M., and Yiou, F., Yiou, P.: 1993, ‘Extending the Vostok Ice–Core Record of Paleoclimate to the Penultimate Glacial Period’, Nature 364, 407.Google Scholar
  40. Koc, N., Jansen, E., and Haflidason, H.: 1993. ‘Paleoceanographic Reconstructions of Surface Ocean Conditions in the Greenland, Iceland and Norwegian Seas through the Last 14 ka Based on Diatoms’, Quat. Sci. Rev. 12, 115.Google Scholar
  41. Koerner, R. M. and Fisher, D. A.: 1990, ‘A Record of Holocene Summer Climate from a Canadian High–Arctic Ice Core’, Nature 343, 630.Google Scholar
  42. Kutzbach, J. E.: 1981, ‘Monsoon Climate of the Early Holocene: Climate Experiment with Earth's Orbital Parameters for 9000 Years Ago’, Science 214, 59.Google Scholar
  43. Kutzbach, J. E. et al.: 1996, ‘Potential Role of Vegetation in the Climatic Sensitivity of High–Latitude Regions: A Case Study at 6000 Years BP’, Global Biogeochem. Cycles 6, 727.Google Scholar
  44. Lamb, H. H.: 1977, Climate: Past, Present, and Future, 2, Methuen, London.Google Scholar
  45. Lean, J.: 1994, ‘Solar Forcing of Global Climate’, in Esme–Ribes, E. (ed.), The Solar Engine and its Influence on Terrestrial Atmosphere and Climate, Springer–Verlag, NY, 164 pp.Google Scholar
  46. Lewthwaite, J. W. and Sherratt, A.: 1980, ‘Chronological Atlas’, in Sherratt, A. (ed.), Cambridge Encyclopedia of Archeology, Cambridge Univ. Press, Cambridge, 437 pp.Google Scholar
  47. Loewe, M.: 1980, ‘The Growth of a Chinese Empire’, in Sherratt, A. (ed.), Cambridge Encyclopedia of Archeology, Cambridge Univ. Press, Cambridge, 246 pp.Google Scholar
  48. Lorius, C., Jouzel, J., Ritz, C., Merlivat, L., Barkov, N. I., Korotkevtich, Y. S., and Kotlyakov, V. M.: 1985, ‘A 150,000–Year Climatic Record from Antarctic Ice’, Nature 316, 591.Google Scholar
  49. Mann, M. E., Bradley, R. S., and Hughes, M. K.: 1999, ‘Northern Hemisphere Temperatures during the Past Millennium’, Geophys. Res. Lett. 26, 59.Google Scholar
  50. McNeil, W.: 1976, Plagues and Peoples, Doubleday, NY.Google Scholar
  51. Milankovitch, M. M.: 1941, Canon of Insolation and the Ice–Age Problem, Beograd: Koniglich Serbische Akademie. [English translation by the Israel program for Scientific Translations]. U.S. Dep’t of Commerce, and National Science Foundation, Washington, D.C.Google Scholar
  52. Nichols, H.: 1975, ‘Palynological and Paleoclimate Study of the Late Quaternary Displacement of the Boreal Forest–Tundra Ecotone in Keewatin and MacKenzie, NWT’, Inst. Arctic Alpine Res. Occasional Paper 15, Boulder, Co.Google Scholar
  53. Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.–M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Lipenkov, V., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., and Stievenard, M.: 1999, ‘Climate and Atmospheric History of the Last 420,000 Years from the Vostok Ice Core, Antarctica’, Nature 399, 429.Google Scholar
  54. Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., and Solomon, A. M.: 1992, ‘A Global Biome Model Based on Plant Physiology and Dominance, Soil Properties and Climate’, J. Biogeogr. 19, 117.Google Scholar
  55. Rackam, O.: 1980, Ancient Woodland, Edward Arnold, London.Google Scholar
  56. Raymo, M. E.: 1997, ‘The Timing of Major Climatic Terminations’, Paleoceanogr 12, 577.Google Scholar
  57. Ren, G. and Beug, H.–J.: 2002, ‘Mapping Holocene Pollen and Vegetation of China’, Quat. Sci. Rev. 21, 1395.Google Scholar
  58. Roberts, N.: 1998, The Holocene, Blackwell Publ., Oxford.Google Scholar
  59. Ruddiman, W. F.: 2003, ‘Insolation, Ice Sheets and Greenhouse Gases’, Quat. Sci. Rev. 22, 1597.Google Scholar
  60. Ruddiman, W. F. and Raymo, M. E.: 2003, ‘A Methane–Based Time Scale for Vostok Ice: Climatic Implications’, Quat. Sci. Rev. 22, 141.Google Scholar
  61. Ruddiman, W. F. and Thomson, J. S.: 2001, ‘The Case for Human Causes of Increased Atmospheric CH4 over the Last 5000 Years’, Quat. Sci. Rev. 20, 1769.Google Scholar
  62. Shackleton, N. J.: 2000, ‘The 100,000–Year Ice–Age Cycle Identified and Found to Lag Temperature, Carbon Dioxide, and Orbital Eccentricity’, Science 289, 1897.Google Scholar
  63. Shaffer, L. N.: 1992, Native Americans before 1492, M. E. Sharpe, Armonk, NY.Google Scholar
  64. Sherratt, A. (ed.): 1980, Cambridge Encyclopedia of Archeology, Cambridge Univ. Press, Cambridge.Google Scholar
  65. Simmons, I. G.: 1996, Changing the Face of the Earth, Blackwell, Oxford.Google Scholar
  66. Smith, R. L. and Smith, T. M.: 1998, Elements of Ecology, Benjamin–Cummings, Menlo Park, CA.Google Scholar
  67. Taylor, C.: 1983, Village and Farmstead, George Phillip, London.Google Scholar
  68. Thirgood, J. V.: 1981, Man and the Mediterranean Forest, Academic Press, London.Google Scholar
  69. Weming, Y.: 1991, ‘China's Earliest Agricultural Remains’, Indo–Pac. Prehist. Assoc. Bull. 10, 118.Google Scholar
  70. Wigley, T. M. I., Jaunman, P. J., Santer, B., and Taylor, K. E.: 1998, ‘Relative Detectability of Greenhouse Gas Signals and Aerosol Climate Change Signals’, Clim. Dyn. 14, 781.Google Scholar
  71. Williams, L. D.: 1978, ‘The Little Ice Age Glaciation Level on Baffin Island, Arctic Canada’, Palaeogeogr., Palaeoclimatol., Palaeoecol. 25, 199.Google Scholar
  72. Zohary, D. and Hopf, M.: 1993, Domestication of Plants in the Old World, Oxford Univ. Press, Oxford.Google Scholar
  73. Zolitschka, B., Behre, K.–E., and Schneider, J.: 2003, ‘Humans and Climatic Impact on the Environment as Derived from Colluvial, Fluvial, and Lacustrine Archives–Examples from the Bronze Age to the Migration Period, Germany’, Quat. Sci. Rev. 22, 81.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • William F. Ruddiman
    • 1
  1. 1.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleU.S.A.

Personalised recommendations