Chromosome Research

, Volume 12, Issue 4, pp 337–343 | Cite as

Generation of Chromosome Painting Probes from Single Chromosomes by Laser Microdissection and Linker-Adaptor PCR

  • Stefan Thalhammer
  • Sabine Langer
  • Michael R. Speicher
  • Wolfgang M. Heckl
  • Jochen B. Geigl
Article

Abstract

Fluorescence in situ hybridization (FISH) plays an essential role in research and clinical diagnostics. The versatility and resolution of FISH depends critically on the probe set used. Here, we describe an improved approach for the generation of specific DNA probes from single copies of chromosomes. Single chromosomes or single chromosomal regions were microdissected by laser pressure catapulting and amplified using linker-adaptor PCR. The probes were labeled and tested in various scenarios including multicolor-FISH experiments employing up to seven different fluorochromes. FISH confirmed the specific and even staining of the respective chromosomal regions. Furthermore, the capability of these probes to detect even small translocations (<3 Mb) suggests that the dissected regions are completely represented in the generated painting probes.

chromosome painting laser microdissection linker-adaptor PCR molecular cytogenetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azofeifa J, Fauth C, Kraus J et al. (2000) An optimized probe set for the detection of small interchromosomal aberrations by use of 24-color FISH. Am J Hum Genet 66: 1684–1688.PubMedCrossRefGoogle Scholar
  2. Carter NP, Ferguson-Smith MA, Perryman MT et al. (1992) Reverse chromosome painting: a method for the rapid analysis of aberrant chromosomes in clinical cytogenetics. J Med Genet 29: 299–307.PubMedCrossRefGoogle Scholar
  3. Deng HX, Yoshiura K, Dirks RW et al. (1992) Chromosome-band-specific painting: chromosome in situ suppression hybridization using PCR products from a microdissected chromosome band as a probe pool. Hum Genet 89: 13–17.PubMedCrossRefGoogle Scholar
  4. Greulich KO, Leitz G (1994) Light as microsensor and micromanipulator: laser microbeams and optical tweezers. Exp Techn Phys 40: 1–14.Google Scholar
  5. Gribble S, Ng BL, Prigmore E et al. (2004) Chromosome paints from single copies of chromosomes. Chromosome Res 12: 143–151.PubMedCrossRefGoogle Scholar
  6. Guan XY, Meltzer PS, Trent JM (1994) Rapid generation of whole chromosome painting probes (WCPs) by chromosome microdissection. Genomics 22: 101–107.PubMedCrossRefGoogle Scholar
  7. Klein CA, Schmidt-Kittler O, Schardt JA et al. (1999) Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc Natl Acad Sci USA 96: 4494–4499.PubMedCrossRefGoogle Scholar
  8. Kubickova S, Cernohorska H, Musilova P et al. (2002) The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. Chromosome Res 10: 571–577.PubMedCrossRefGoogle Scholar
  9. Langer S, Kraus J, Jentsch I et al. (2004) Multicolor chromosome painting in diagnostic and research applications. Chromosome Res 12: 14–23.CrossRefGoogle Scholar
  10. Lengauer C, Eckelt A, Weith A et al. (1991) Painting of defined chromosomal regions by in situ suppression hybridization of libraries from laser-microdissected chromosomes. Cytogenet Cell Genet 56: 27–30.PubMedCrossRefGoogle Scholar
  11. Meltzer PS, Guan XY, Burgess A et al. (1992) Rapid generation of region specific probes by chromosome microdissection and their application. Nat Genet 1: 24–28.PubMedCrossRefGoogle Scholar
  12. Müller-Navia J, Nebel A, Schleiermacher E. (1995) Complete and precise characterization of marker chromosomes by application of microdissection in prenatal diagnosis. Hum Genet 96: 661–667.PubMedCrossRefGoogle Scholar
  13. Schermelleh L, Thalhammer S, Cremer T et al. (1999) Laser microdissection and laser pressure catapulting as an approach for the generation of chromosome specific paint probes. BioTechniques Int 27: 362–367.Google Scholar
  14. Snijders AM, Nowak N, Segraves R et al. (2001) Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet 29: 263–264.PubMedCrossRefGoogle Scholar
  15. Telenius H, Pelmear A, Tunnacliffe A et al. (1992) Cytogenetic analysis by chromsome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4: 257–263.PubMedGoogle Scholar
  16. Thalhammer S, Lahr G, Clement-Sengewald A et al. (2003) Laser microtools in cell biology and molecular medicine. J Laser Phys 13: 681–692.Google Scholar
  17. Weimer J, Koehler MR, Wiedemann U et al. (2001) Highly comprehensive karyotype analysis by a combination of spectral karyotyping (SKY), microdissection, and reverse painting (SKY-MD). Chromosome Res 9: 395–402.PubMedCrossRefGoogle Scholar
  18. Wienberg J, Jauch A, Lüdecke HJ et al. (1994) The origin of human chromosome 2 analyzed by comparative chromosome mapping with a DNA microlibrary. Chromosome Res 2: 405–410.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Stefan Thalhammer
    • 1
  • Sabine Langer
    • 2
    • 3
  • Michael R. Speicher
    • 2
    • 3
  • Wolfgang M. Heckl
    • 1
  • Jochen B. Geigl
    • 2
    • 3
  1. 1.Department für GeowissenschaftenUniversity of MunichMunichGermany; Tel
  2. 2.Institut für HumangenetikTechnische Universität MünchenMünchenGermany
  3. 3.Institut für HumangenetikGSF-Forschungszentrum für Umwelt und GesundheitNeuherbergGermany

Personalised recommendations