Chromosome Research

, Volume 12, Issue 4, pp 317–335 | Cite as

Evolution of Genome Organizations of Squirrels (Sciuridae) Revealed by Cross-Species Chromosome Painting

  • Tangliang Li
  • Patricia C. M. O'Brien
  • Larisa Biltueva
  • Beiyuan Fu
  • Jinhuan Wang
  • Wenhui Nie
  • Malcolm A. Ferguson-Smith
  • Alexander S. Graphodatsky
  • Fengtang Yang

Abstract

With complete sets of chromosome-specific painting probes derived from flow-sorted chromosomes of human and grey squirrel (Sciurus carolinensis), the whole genome homologies between human and representatives of tree squirrels (Sciurus carolinensis, Callosciurus erythraeus), flying squirrels (Petaurista albiventer) and chipmunks (Tamias sibiricus) have been defined by cross-species chromosome painting. The results show that, unlike the highly rearranged karyotypes of mouse and rat, the karyotypes of squirrels are highly conserved. Two methods have been used to reconstruct the genome phylogeny of squirrels with the laboratory rabbit (Oryctolagus cuniculus) as the out-group: (1) phylogenetic analysis by parsimony using chromosomal characters identified by comparative cytogenetic approaches; (2) mapping the genome rearrangements onto recently published sequence-based molecular trees. Our chromosome painting results, in combination with molecular data, show that flying squirrels are phylogenetically close to New World tree squirrels. Chromosome painting and G-banding comparisons place chipmunks (Tamias sibiricus), with a derived karyotype, outside the clade comprising tree and flying squirrels. The superorder Glires (orde Rodentia + order Lagomorpha) is firmly supported by two conserved syntenic associations between human chromosomes 1 and 10p homologues, and between 9 and 11 homologues.

chromosome painting karyotype Petaurista phylogeny Sciurus squirrel Tamias 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carter NP, Ferguson-Smith ME, Affara NA, Briggs H, Ferguson-Smith MA (1990) Study of X chromosome abnormality in XX males using bivariate flow karyotype analysis and flow sorted dot blots. Cytometry 11: 202–207.PubMedCrossRefGoogle Scholar
  2. Carter NP, Ferguson-Smith MA, Perryman MT et al. (1992) Reverse chromosome painting: a method for the rapid analysis of aberrant chromosomes in clinical cytogenetics. J Med Genet 29: 299–307.PubMedCrossRefGoogle Scholar
  3. Chowdhary BP, Raudsepp T (2001) Chromosome painting in farm, pet and wild animal species. Methods Cell Sci 23: 37–55.PubMedCrossRefGoogle Scholar
  4. Eisenburg JF (1981) The Mammalian Radiations: An Analysis of Trends in Evolution, Adaptation and Behavior. Chicago: The University of Chicago Press, pp 82–111.Google Scholar
  5. Graphodatsky AS, Yang F, Perelman PL et al. (2002) Comparative molecular cytogenetic studies in the order Carnivora: mapping chromosomal rearrangements onto the phylogenetic tree. Cytogenet Genome Res 96: 137–145.PubMedCrossRefGoogle Scholar
  6. Gregory SG, Sekhon M, Schein J et al. (2002) A physical map of the mouse genome. Nature 418: 743–750.PubMedCrossRefGoogle Scholar
  7. Grützner F, Himmelbauer H, Paulsen M, Ropers H-H, Haaf T (1999) Comparative mapping of mouse and rat chromosomes by fluorescence in situ hybridization. Genomics 55: 306–313.PubMedCrossRefGoogle Scholar
  8. Hight ME, Goodman M, Prychodko W (1974) Immunological studies of the Sciuridae. Syst Zool 23: 12–25.CrossRefGoogle Scholar
  9. Huchon D, Madsen O, Sibbald MJJB, et al. (2002) Rodent phylogeny and a timescale for the evolution of Glires: evidence from an extensive taxon sampling using three nuclear genes. Mol Biol Evol 19: 1053–1065.PubMedGoogle Scholar
  10. Korstanje R, O'Brien PCM, Yang F et al. (1999) Complete homology maps of the rabbit (Oryctolagus cuniculus) and human by reciprocal chromosome painting. Cytogenet Cell Genet 86: 317–322.PubMedCrossRefGoogle Scholar
  11. Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O'Brien SJ (2001a) Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–618.PubMedCrossRefGoogle Scholar
  12. Murphy WJ, Stanyon R, O'Brien SJ (2001b) Evolution of mammalian genome organization inferred from comparative gene mapping. Genome Biol 2: 1–8.CrossRefGoogle Scholar
  13. Mercer JM, Roth VL (2003) The effects of Cenozoic global change on squirrel phylogeny. Science 299: 1568–1572.PubMedCrossRefGoogle Scholar
  14. Müller S, Hollatz M, Wienberg J (2003) Chromosomal phylogeny and evolution of gibbons (Hylobatidae). Hum Genet 113: 493–501.PubMedCrossRefGoogle Scholar
  15. Nadler CF (1966) Chromosomes of Spermophilus franklini and taxonomy of the ground squirrel genus Spermophilus. Syst Zool 15: 199–206.PubMedCrossRefGoogle Scholar
  16. Nadler CF, Block MH (1962) The chromosomes of some North American chipmunks (Sciuridae) belonging to the genera Tamias and Eutamias. Chromosoma 13: 1–15.PubMedGoogle Scholar
  17. Nadler CF, Hoffmann RS (1974) Chromosomes of the African ground squirrel, Xerus rutilus (Rodentia: Sciuridae). Experientia 30: 889–891.PubMedCrossRefGoogle Scholar
  18. Nadler CF, Hoffmann RS, Honacki JH, Pozin D (1977) Chromosome evolution in chipmunks, with special emphasis on A and B karyotypes of the subgenus Neotamias. Am Midl Nat 98: 343–353.CrossRefGoogle Scholar
  19. Neusser M, Stanyon R, Bigoni F, Wienberg J, Müller S (2001) Molecular cytotaxonomy of New World monkeys (Platyrrhini)-comparative analysis of five species by multi-color chromosome painting gives evidence for a classification of Callimico goeldii within the family of Callitrichidae. Cytogenet Cell Genet 94: 206–215.PubMedCrossRefGoogle Scholar
  20. Nie W, Wang J, O'Brien PCM et al. (2002) The genome phylogeny of domestic cat, red panda and five mustelid species revealed by comparative chromosome painting and G-banding. Chromosome Res 10: 209–222.PubMedCrossRefGoogle Scholar
  21. Nilsson S, Helou K, Walentinsson A, Szpirer C, Nerman O, Stahl F (2001) Rat-mouse and rat-human comparative maps based on gene homology and high-resolution ZOO-FISH. Genomics 74: 287–298.PubMedCrossRefGoogle Scholar
  22. Nowak RM (1999) Walker's Mammals of the World, 6th edn, Vol 2, Baltimore and London: The Johns Hopkins University Press, pp 1246–1306Google Scholar
  23. Ohno S (1973) Ancient linkage groups and frozen accidents. Nature 244: 259–262.CrossRefGoogle Scholar
  24. Oshida T, Masuda R, Yoshida MC (1996) Phylogenetic relationships among Japanese species of the family Sciuridae (Mammalia, Rodentia), inferred from nucleotide sequences of mitochondrial 12 s ribosomal RNA genes. Zool Sci 13: 615–620.PubMedCrossRefGoogle Scholar
  25. Oshida T, Yanagawa H, Tsuda M, Inoue S, Yoshida MC (2000a) Comparisons of the banded karyotypes between the small Japanese flying squirrel, Pteromys momonga and the Russian flying squirrel, P. volans (Rodentia, Sciuridae). Caryologia 53: 133–140.Google Scholar
  26. Oshida T, Obara Y, Lin L-K, Yoshida MC (2000b) Comparison of banded karyotypes between two subspecies of the red and white giant flying squirrel Petaurista alborufus (Mammalia, Rodentia). Caryologia 53: 261–267.Google Scholar
  27. Oshida T, Lin L-K, Yanagawa H, Kawamichi T, Kawamichi M, Cheng V (2002) Banded karyotypes of the hairy-footed flying squirrel Belomys (Trogopterus) pearsonii (Mammalia, Rodentia) from Taiwan. Caryologia 55: 207–211.Google Scholar
  28. Petit D, Dutrillaux B (1985) Chromosomal phylogeny of 7 species of Sciurinae. Ann Genet 28: 13–18.PubMedGoogle Scholar
  29. Piaggio AJ, Spicer GS (2001) Molecular phylogeny of the chipmunks inferred from mitochondrial cytochrome b and cytochrome oxidase gene sequences. Mol Phylogenet Evol 20: 335–350.PubMedCrossRefGoogle Scholar
  30. Richard F, Messaoudi C, Bonnet-Garnier A, Lombard M, Dutrillaux B (2003a) Highly conserved chromosomes in an Asian squirrel (Menetes berdmorei, Rodentia: Sciuridae) as demonstrated by ZOO-FISH with human probes. Chromosome Res 11: 597–603.PubMedCrossRefGoogle Scholar
  31. Richard F, Lombard M, Dutrillaux B (2003b) Reconstruction of the ancestral karyotype of eutherian mammals. Chromosome Res 11: 605–618.PubMedCrossRefGoogle Scholar
  32. Robinson TJ, Elder FFB, Chapman JA (1984) Evolution of chromosomal variation in cottontails, genus Sylvilagus (Mammalia: Lagomorpha). II. Sylvilagus audubonii, S. idahoensis, S. nuttallii, and S. palustris. Cytogenet Cell Genet 38: 282–289.PubMedGoogle Scholar
  33. Rokas A, Holland PWH (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15: 454–459.PubMedCrossRefGoogle Scholar
  34. Roth VL (1996) Cranial integration in the Sciuridae. Am Zool 36: 14–23.Google Scholar
  35. Scherthan H, Cremer T, Arnason U, Weier HU, Lima-de-Faria A, Frönicke L (1994) Comparative chromosome painting discloses homologous segments in distantly related mammals. Nature Genet 6: 342–347.PubMedCrossRefGoogle Scholar
  36. Seabright M (1972) The use of proteolytic enzymes for the mapping of structural rearrangements in the chromosomes of man. Chromosoma 36: 204–210.PubMedCrossRefGoogle Scholar
  37. Stanyon R, Stone G, Garcia M, Froenicke L (2003) Reciprocal chromosome painting shows that squirrels, unlike murid rodents, have a highly conserved genome organization. Genomics 82: 245–249.PubMedCrossRefGoogle Scholar
  38. Steppan SJ, Storz BL, Hoffmann RS (2004) Nuclear DNA phylogeny of the squirrels (Mammalia, Rodentia) and the evolution of arboreality from c-myc and RAG1. Mol Phylogenet Evol 30: 703–719PubMedCrossRefGoogle Scholar
  39. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75: 304–306.PubMedCrossRefGoogle Scholar
  40. Swofford DL (1998) PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods), 4th edn. Sinauer Associates, Sunderland, Mass.Google Scholar
  41. Telenius H, Pelmear AH, Tunnacliffe A et al. (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Gene Chrom Cancer 4: 257–263.Google Scholar
  42. Verma RS, Babu A (1995) Human Chromosomes: Principles and Techniques, 2nd edn. New York: McGraw-Hill Inc.Google Scholar
  43. Viegas-Pequignot E, Koiffmann CP, Dutrillaux B (1985) Chromosomal phylogeny of Lagothrix, Brachyteles, and Cacajao. Cytogenet Cell Genet 39: 99–104.PubMedCrossRefGoogle Scholar
  44. Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103: 642–652.PubMedGoogle Scholar
  45. Yang F, Müller S, Just R, Ferguson-Smith MA, Wienberg J (1997) Comparative chromosome painting in mammals: human and the Indian muntjac (Muntiacus muntjak vaginalis). Genomics 39: 396–401.PubMedCrossRefGoogle Scholar
  46. Yang F, O'Brien PCM, Milne BS et al. (1999) A complete comparative chromosome map for the dog, red fox and human and its integration with canine genetic maps. Genomics 62: 189–202.PubMedCrossRefGoogle Scholar
  47. Yang F, Alkalaeva EZ, Perelman PL et al. (2003) Reciprocal chromosome painting among human, aardvark, and elephant (superorder Afrotheria) reveals the likely eutherian ancestral karyotype. Proc Natl Acad Sci USA 100: 1062–1066.PubMedCrossRefGoogle Scholar
  48. Yang F, Fu B, O'Brien PCM, Nie W, Ryder OA, Ferguson-Smith MA (2004) Refined genome-wide comparative map of the domestic horse, donkey and human based on cross-species chromosome painting: insight into the occasional fertility of mules. Chromosome Res 12: 65–76.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Tangliang Li
    • 1
    • 4
  • Patricia C. M. O'Brien
    • 2
  • Larisa Biltueva
    • 3
  • Beiyuan Fu
    • 2
  • Jinhuan Wang
    • 1
  • Wenhui Nie
    • 1
  • Malcolm A. Ferguson-Smith
    • 2
  • Alexander S. Graphodatsky
    • 3
  • Fengtang Yang
    • 1
    • 2
  1. 1.Key Laboratory of Cellular & Molecular Evolution, Kunming Institute of ZoologyThe Chinese Academy of SciencesKunming, YunnanPeople's Republic of China; Tel
  2. 2.Centre for Veterinary ScienceCambridgeUK
  3. 3.Institute of Cytology and GeneticsNovosibirskRussia
  4. 4.Graduate School of Chinese Academy of SciencesBeijingPeople's Republic of China

Personalised recommendations