Advertisement

Chromosome Research

, Volume 12, Issue 2, pp 107–116 | Cite as

Genome differentiation by GISH in interspecific and intergeneric hybrids of tomato and related nightshades

  • Yuanfu Ji
  • Ricardo Pertuzé
  • Roger T. Chetelat
Article

Abstract

We employed genomic in situ hybridization to analyze the chromosomal constitution and pairing of interspecific and intergeneric hybrids involving cultivated tomato (Lycopersicon esculentum) and two related wild nightshade species, Solanum lycopersicoides and S. sitiens. Using standard stringency conditions, the tomato genome was readily distinguished from that of the two nightshades, whereas the latter were only distinguishable under increased stringency. These observations indicate a more distant phylogenetic relationship between L. esculentum and the Solanum group, and suggest S. lycopersicoides and S. sitiens share a high degree of sequence homology. Chromosomal associations during meiosis of interspecific and intergeneric hybrids were consistent with these relationships: chromosomes of F1 L. esculentum×S. lycopersicoides and F1 L. esculentum×S. sitiens hybrids frequently formed univalents during diakinesis. In contrast, F1 S. lycopersicoides×S. sitiens hybrids showed complete bivalent formation. L. esculentum×S. sitiens hybrids, including the F1 plants, a monosomic addition, and an allotetraploid, showed lower frequencies of pairing between homeologous chromosomes than the corresponding L. esculentum×S. lycopersicoides genotypes. A trigenomic 2n+14 hybrid, with 12 extra chromosomes from S. sitiens and 2 from S. lycopers icoides, displayed mostly homologous chromosome associations. The distribution of rDNA genes appeared similar in the three genomes.

genomic in situ hybridization homeologous pairing S. lycopersicoides S. sitiens tomato 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benabdelmouna A, Abirached-Darmency M, Darmency H (2001) Phylogenetic and genomic relationships in Setaria italica and its close relatives based on the molecular diversity and chromosomal organization of 5S and 18S-5.8S-25S rDNA genes. Theor Appl Genet 103: 668-677.CrossRefGoogle Scholar
  2. Borisjuk N, Borisjuk L, Petjuch G, Hemleben V (1994) Comparison of nuclear ribosomal RNA genes among Solanum species and other Solanaceae. Genome 37: 271-279.PubMedGoogle Scholar
  3. Chetelat RT, Meglic V (2000) Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor Appl Genet 100: 232-341.CrossRefGoogle Scholar
  4. Chetelat RT, Cisneros P, Stamova L, Rick CM (1997) A male-fertile Lycopersicon esculentum ×Solanum lycopersicoides hybrid enables direct backcrossing to tomato at the diploid level. Euphytica 95: 99-108.CrossRefGoogle Scholar
  5. Chetelat RT, Rick CM, Cisneros P, Alpert KB, DeVerna JW (1998) Identification, transmission, and cytological behavior of Solanum lycopersicoides Dun. monosomic alien addition lines in tomato (Lycopersicon esculentum Mill.). Genome 41:40-50.CrossRefGoogle Scholar
  6. Chetelat RT, Meglic V, Cisneros P (2000) A genetic map of tomato based on BC1 Lycopersicon esculentum × Solanum lycopersicoides reveals overall synteny but suppressed recombination between these homeologous genomes. Genetics 154: 857-867.PubMedGoogle Scholar
  7. Child A (1990) A synopsis of Solanum subgenus Potatoe (G. Don) D'Arcy (Tuberarium (Dun.) Bitter (s.1.)). Feddes Repertorium 101: 209-235.CrossRefGoogle Scholar
  8. DeVerna JW, Rick CM, Chetelat RT, Lanini BJ, Alpert KB (1990) Sexual hybridization of Lycopersicon esculentum and Solanum rickii by means of a sesquidiploid bridging hybrid. PNAS 87: 9496-9490.CrossRefGoogle Scholar
  9. Hanson RE, Islam-Faridi NM, Percival EA et al. (1996) Distribution of 5S and 18S-28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid species. Chromosoma 105: 55-61.PubMedCrossRefGoogle Scholar
  10. Ji Y, Chetelat RT (2003) Homeologous pairing and recombination in Solanum lycopersicoides monosomic addition and substitution lines of tomato. Theor Appl Genet 106: 979-989.PubMedGoogle Scholar
  11. Ji Y, Raska DA, McKnight TD et al. (1997) Use of meiotic FISH for identification of a new monosome in Gossypium hirsutum L. Genome 40: 34-40.PubMedGoogle Scholar
  12. Jiang J, Gill BS (1994) New 18S.26S ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploid wheats. Chromosoma 103: 179-185.PubMedGoogle Scholar
  13. Khush GS, Rick CM (1967) Cytogenetic analysis of the tomato genome by means of induced deficiencies. Chromosoma 23: 452-484.CrossRefGoogle Scholar
  14. Kimber G, Yen Y (1990) Genome analysis of diploid plants. PNAS 87: 3205-3209.PubMedCrossRefGoogle Scholar
  15. Lapitan NLV, Ganal MW, Tanksley SD (1991) Organization of the 5S ribosomal RNA genes in the genome of tomato. Genome 34: 509-514.Google Scholar
  16. Moran ES, Armstrong SJ, Santos JL, Franklin FCH, Jones GH (2001) Chiasma formation in Arabidopsis thaliana accession Wassileskija and in two meiotic mutants. Chromosome Res 9: 121-128.CrossRefGoogle Scholar
  17. Parokonny AS, Marshall JA, Bennett MD, Cocking EC, Davey MR, Power JB (1997) Homeologous pairing and recombination in backcross derivatives of tomato somatic hybrids (Lycopersicon esculentum (+) L. peruvianum). Theor Appl Genet 94: 713-723.CrossRefGoogle Scholar
  18. Peralta IE, Spooner DM (2001) Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [Mill.] Wettst. subsection Lycopersicon). Am J Bot 88: 1888-1902.Google Scholar
  19. Pertuzé; RA, Ji Y, Chetelat RT (2002) Comparative linkage map of the Solanum lycopersicoides and S. sitiens genomes and their differentiation from tomato. Genome 45: 1003-1012.PubMedCrossRefGoogle Scholar
  20. Pertuzé; RA, Ji Y, Chetelat RT (2003) Transmission and recombination of homeologous Solanum sitiens chromosomes in tomato. Theor Appl Genet. (In press).Google Scholar
  21. Rick CM (1979) Biosystematic studies in Lycopersicon and closely related species of Solanum. In J.G. Hawkes, R.N. Lester, A.D. Skelding, eds. The Biology and Taxonomy of the Solanaceae. New York: Academic Press. 667-678.Google Scholar
  22. Rick CM (1988) Tomato-like nightshades: affinities, autecology, and breeders' opportunities. Econ Bot 42: 145-154.Google Scholar
  23. Rick CM, DeVerna JW, Chetelat RT, Stevens MA (1986) Meiosis in sesquidiploid hybrids of Lycopersicon esculentum and Solanum lycopersicoides. PNAS 83: 3580-3583.PubMedCrossRefGoogle Scholar
  24. Schwarzacher T, Leitch AR. Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64: 315-324.Google Scholar
  25. Sherman JD, Stack SM (1995) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. VI. High resolution recombination nodule map for tomato (Lycopersicon esculentum). Genetics 141: 683-708.PubMedGoogle Scholar
  26. Taketa S, Harrison GE, Heslop-Harrison JS (1999) Comparative physical mapping of the 5S and 18S-25S rDNA in nine wild Hordeum species and cytotypes. Theor Appl Genet 98: 1-9.CrossRefGoogle Scholar
  27. Xu J, Earle ED (1996) High resolution physical mapping of 45S (5.8S, 18S and 25S) rDNA gene loci in the tomato genome using a combination of karyotyping and FISH of pachytene chromosomes. Chromosoma 104: 545-550.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Yuanfu Ji
    • 1
  • Ricardo Pertuzé
    • 1
  • Roger T. Chetelat
    • 1
  1. 1.Department of Vegetable CropsUniversity of CaliforniaDavisUSA

Personalised recommendations