Chromosome Research

, Volume 12, Issue 1, pp 77–91

Flow cytogenetics and plant genome mapping

  • Jaroslav Doležel
  • Marie Kubaláková
  • Jan Bartoš
  • Jiří Macas
Article

Abstract

The application of flow cytometry and sorting (flow cytogenetics) to plant chromosomes did not begin until the mid-1980s, having been delayed by difficulties in preparation of suspensions of intact chromosomes and discrimination of individual chromosome types. These problems have been overcome during the last ten years. So far, chromosome analysis and sorting has been reported in 17 species, including major legume and cereal crops. While chromosome classification by flow cytometry (flow karyotyping) may be used for quantitative detection of structural and numerical chromosome changes, chromosomes purified by flowsorting were found to be invaluable in a broad range of applications. These included physical mapping using PCR, high-resolution cytogenetic mapping using FISH and PRINS, production of recombinant DNA libraries, targeted isolation of markers, and protein analysis. A great potential is foreseen for theuse of sorted chromosomes for construction of chromosome and chromosome-arm-specific BAC libraries, targeted isolation of low-copy (genic) sequences, high-throughput physical mapping of ESTs and other DNA sequences by hybridization to DNA arrays, and global characterization of chromosomal proteins using approaches of proteomics. This paper provides a comprehensive review of the methodology and application of flow cytogenetics, and assesses its potential for plant genome analysis.

chromosome-specific DNA libraries chromosome sorting flow cytometry genomics physical mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arumuganathan K, Slattery JP, Tanksley SD, Earle ED (1991) Preparation and flow cytometric analysis of metaphase chromosomes of tomato. Theor Appl Genet 82: 101–111.Google Scholar
  2. Arumuganathan K, Martin GB, Telenius H, Tanksley SD, Earle ED (1994) Chromosome 2-specific DNA clones from flow-sorted chromosomes of tomato. Mol Gen Genet 242: 551–558.Google Scholar
  3. Binarová P, Hause B, Doležel J, Dráber P (1998) Association of g-tubulin with kinetochore/centromeric region of plant chromosomes. Plant J 14: 751–757.Google Scholar
  4. Boschman GA, Manders EMM, Rens W, Slater R, Aten JA (1992) Semi-automated detection of aberrant chromosomes in bivariate flow karyotypes. Cytometry 13: 469–477.Google Scholar
  5. Carrano AV, Gray JW, Langlois RG, Yu LC (1983) Flow cytogenetics: Methodology and applications. In: Rowley JD, Ultmann JE, eds. Chromosomes and Cancer. New York: Academic Press, Inc., pp 195–209.Google Scholar
  6. Cenci A, Chantret N, Kong X et al. (2003) Construction and characterization of a half million clone BAC library of durum wheat (Triticum turgidum ssp. durum). Theor Appl Genet 107: 931–939.Google Scholar
  7. Conia J, Bergounioux C, Perennes C, Muller P, Brown S, Gadal P (1987) Flow cytometric analysis and sorting of plant chromosomes from Petunia hybrida protoplasts. Cytometry 8: 500–508.Google Scholar
  8. Conia J, Muller P, Brown S, Bergounioux C, Gadal P (1989) Monoparametric models of flow cytometric karyotypes with spreadsheet software. Theor Appl Genet 77: 295–303.Google Scholar
  9. Cremer T, Lichter P, Borden J, Ward DC, Manuelidis L (1988) Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridisation using chromosome specific library probes. Hum Genet 80: 235–246.Google Scholar
  10. de Jong G, Telenius AH, Telenius H, Perez CF, Drayer JI, Hadlaczky G (1999) Mammalian artificial chromosome pilot facility: Large-scale isolation of functional satellite DNA-based artificial chromosomes. Cytometry 35: 129–133.Google Scholar
  11. de Jong JH, Fransz P, Zabel P (1999) High resolution FISH in plants ‐ techniques and applications. Trends Plant Sci 4: 258–263.Google Scholar
  12. de Laat AMM, Blaas J (1984) Flow-cytometric characterization and sorting of plant chromosomes. Theor Appl Genet 67: 463–467.Google Scholar
  13. de Laat AMM, Schel JHN(1986) The integrity of metaphase chromosomes of Haplopappus gracilis (Nutt.) Gray isolated by flow cytometry. Plant Sci 47: 145–151.Google Scholar
  14. Doležel J (1991) KARYOSTAR: Microcomputer program for modelling of monoparametric flow karyotypes. Biológia 46: 1059–1064.Google Scholar
  15. Doležel J, Lucretti S (1995) High-resolution flow karyotyping and chromosome sorting in Vicia faba lines with standard and reconstructed karyotypes. Theor Appl Genet 90: 797–802.Google Scholar
  16. Doležel J, Binarová P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31: 113–120.Google Scholar
  17. Doležel J, Číhalíková J, Lucretti S (1992) A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L. Planta 188: 93–98.Google Scholar
  18. Doležel J, Lucretti S, Schubert I (1994) Plant chromosome analysis and sorting by flow cytometry. Crit Rev Plant Sci 21: 275–309.Google Scholar
  19. Doležel J, Číhalíková J, Weiserová J, Lucretti S (1999a) Cell cycle synchronization in plant root meristems. Meth Cell Sci 21: 95–107.Google Scholar
  20. Doležel J, Macas J, Lucretti S (1999b) Flow analysis and sorting of plant chromosomes. In: Robinson JP, Darzynkiewicz Z, Dean PN et al., eds. Current Protocols in Cytometry. New York: John Wiley and Sons, Inc., pp 5.3.1.–5.3.33.Google Scholar
  21. Doležel J, Lysák MA, Kubaláková M, Šimková H, Macas J, Lucretti S (2001) Sorting of plant chromosomes. In: Darzynkiewicz Z, Crissman HA, Robinson JP, eds. Flow Cytometry, 3rd Edition, Part B. San Diego: Academic Press, pp 3–31.Google Scholar
  22. Eriksson T (1966) Partial synchronization of cell division in suspension cultures of Haplopappus gracilis. Physiol Plant 19: 900–910.Google Scholar
  23. Gill KS, Arumuganathan K, Le JH (1999) Isolating individual wheat (Triticum aestivum) chromosome arm by flow cytometric analysis of ditelosomic lines. Theor Appl Genet 98: 1248–1252.Google Scholar
  24. Givan AL (2001) Principles of flow cytometry: an overview. In: Darzynkiewicz Z, Crissman HA, Robinson JP, eds. Flow Cytometry, 3rd Edition, Part A. San Diego: Academic Press, pp 19–50.Google Scholar
  25. Gray JW, Cram LS (1990) Flow karyotyping and chromosome sorting. In: Melamed MR, Lindmo T, Mendelsohn ML, eds. Flow Cytometry and Sorting, Second Edition. New York: Wiley-Liss, pp 503–529.Google Scholar
  26. Grunwald D, Frelat G, Vaiman M (1989) Animal flow cytogenetics. In: Yen A, ed. Flow Cytometry: Advanced Research and Clinical Applications, Vol. 1. Boca Raton: CRC Press, Inc., pp 132–140.Google Scholar
  27. Gualberti G, Doležel J, Macas J, Lucretti S (1996) Preparation of pea (Pisum sativum L.) chromosome and nucleus suspensions from single root tips. Theor Appl Genet 92: 744–751.Google Scholar
  28. Kejnovsk_y E, Vrána J, Matsunaga S et al. (2001) Localization of male-specifically expressed MROS genes of Silene latifolia by PCR on flow-sorted sex chromosomes and autosomes. Genetics 158: 1269–1277.Google Scholar
  29. Koblížková A, Doležel J, Macas J (1998) Subtraction with 3' modified oligonucleotides eliminates amplification artifacts in DNA libraries enriched for microsatellites. BioTechniques 25: 32–38.Google Scholar
  30. Kubaláková M, Lysák MA, Vrána J, Šimková H, Číhalíková J, Doležel J (2000) Rapid identification and determination of purity of flow-sorted plant chromosomes using C-PRINS. Cytometry 41: 102–108.Google Scholar
  31. Kubaláková M, Vrána J, Číhalíková J, Šimková H, Doležel J (2002) Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor Appl Genet 104: 1362–1372.Google Scholar
  32. Kubaláková M, Valárik M, Bartoš J et al. (2003a) Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome 46: 893–905.Google Scholar
  33. Kubaláková M, Bartoš J, Ková›ová P et al. (2003b) Chromosome analysis and sorting in durum wheat and physical mapping of repetitive DNA sequences. In: Proceedings of the Tenth International Wheat Genetics Symposium. Istituto Sperimentale per la Cerealicoltura, Paestum (in press).Google Scholar
  34. Lee JH, Arumuganathan K (1999) Metaphase chromosome accumulation and flow karyotypes in rice (Oryza sativa L.) root tip meristem cells. Mol Cells 9: 436–439.Google Scholar
  35. Lee JH, Arumuganathan K, Kaeppler SM, Kaeppler HF, Papa CM (1996) Cell synchronization and isolation of metaphase chromosomes from maize (Zea mays L.) root tips for flow cytometric analysis and sorting. Genome 39: 697–703.Google Scholar
  36. Lee JH, Arumuganathan K, Yen Y, Kaeppler S, Kaeppler H, Baenziger PS (1997) Root tip cell cycle synchronization and metaphase-chromosome isolation suitable for flow sorting in common wheat (Triticum aestivum L.). Genome 40: 633–638.Google Scholar
  37. Lee JH, Arumuganathan K, Chung YS et al. (2000) Flow cytometric analysis and chromosome sorting of barley (Hordeum vulgare L.). Mol Cells 10: 619–625.Google Scholar
  38. Lee JH, Arumuganathan K, Kaeppler SM et al. (2002) Variability of chromosomal DNA contents in maize (Zea mays L.) inbred and hybrid lines. Planta 215: 666–671.Google Scholar
  39. Leitch AR, Schwarzacher T, Wang ML et al. (1993) Molecular cytogenetic analysis of repeated sequences in a long-term wheat-suspension culture. Plant Cell Tissue Org Cult 33: 287–296.Google Scholar
  40. Li L, Arumuganathan K (2000) High recovery of large molecular weight DNA from sorted maize chromosomes. Plant Mol Biol Rep 18: 41–45.Google Scholar
  41. Li LJ, Arumuganathan K, Rines HW et al. (2001) Flow cytometric sorting of maize chromosome 9 from an oatmaize chromosome addition line. Theor Appl Genet 102: 658–663.Google Scholar
  42. Lucretti S, Doležel J (1997) Bivariate flow karyotyping in broad bean (Vicia faba). Cytometry 28: 236–242.Google Scholar
  43. Lucretti S, Doležel J, Schubert I, Fuchs J (1993) Flow karyotyping and sorting of Vicia faba chromosomes. Theor Appl Genet 85: 665–672.Google Scholar
  44. Lysák MA, Číhalíková J, Kubaláková M, Šimková H, Künzel G, Doležel J (1999) Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L.). Chromosome Res 7: 431–444.Google Scholar
  45. Macas J, Doležel J, Lucretti S et al. (1993) Localization of seed protein genes on flow-sorted field bean chromosomes. Chromosome Res 1: 107–115.Google Scholar
  46. Macas J, Doležel J, Gualberti G, Pich U, Schubert I, Lucretti S (1995) Primer-induced labeling of pea and field bean chromosomes in situ and in suspension. BioTechniques 19: 402–408.Google Scholar
  47. Macas J, Gualberti G, Nouzova´ M, Samec P, Lucretti S, Doležel J (1996) Construction of chromosome-specific DNA libraries covering the whole genome of field bean (Vicia faba L.). Chromosome Res 4: 531–539.Google Scholar
  48. Mayer K, Mewes HW (2002) How can we deliver the large plant genomes? Strategies and perspectives. Curr Opin Plant Biol 5: 173–177.Google Scholar
  49. Neumann P, Lysák M, Doležel J, Macas J (1998) Isolation of chromosomes from Pisum sativum L. hairy root cultures and their analysis by flow cytometry. Plant Sci 137: 205–215.Google Scholar
  50. Neumann P, Požárková D, Vrána J, Doležel J, Macas J (2002) Chromosome sorting and PCR-based physical mapping in pea (Pisum sativum L.). Chromosome Res 10: 63–71.Google Scholar
  51. Pich U, Meister A, Macas J, Doležel J, Lucretti S, Schubert I (1995) Primed in situ labelling facilitates flow sorting of similar sized chromosomes. Plant J 7: 1039–1044.Google Scholar
  52. Pinkel D, Landegent J, Collins C et al. (1988) Fluorescence in situ hybridization with human chromosome-specific libraries. Detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci USA 85: 9138–9142.Google Scholar
  53. Požárková D, Koblížková A, Román B et al. (2002) Development and characterization of microsatellite markers from chromosome 1-specific DNA libraries of Vicia faba. Biol Plant 45: 337–345.Google Scholar
  54. S›afá› J, Janda J, Bartoš J et al. (2003) Dissecting the complex genome of wheat: construction of a chromosome-specific BAC library. Genome Res (submitted).Google Scholar
  55. Schubert I, Doležel J, Houben A, Scherthan H, Wanner G (1993) Refined examination of plant metaphase chromosome structure at different levels made feasible by new isolation methods. Chromosoma 102: 96–101.Google Scholar
  56. Schubert I, Fransz PF, Fuchs J, de Jong H (2003) Chromosome painting in plants. Meth Cell Sci 23: 57–69.Google Scholar
  57. Schwarzacher T, Wang ML, Leitch AR, Miller N, Moore G, Heslop-Harrison JS (1997) Flow cytometric analysis of the chromosomes and stability of a wheat cell-culture line. Theor Appl Genet 94: 91–97.Google Scholar
  58. Šimková H, Číhalíková J, Vrána J, Lysák MA, Doležel J (2003) Preparation of high molecular weight DNA from plant nuclei and chromosomes isolated from root tips. Biol Plantarum 46: 369–373Google Scholar
  59. Telenius H, Carter NP, Bebb, CE., Nordenskjöld M, Ponder BAJ, Tunnacliffe A (1992). Degenerate oligonucleotideprimed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13: 718–725.Google Scholar
  60. ten Hoopen R, Manteuffel R, Doležel J, Malysheva L, Schubert I (2000) Evolutionary conservation of kinetochore protein sequences in plants. Chromosoma 109: 482–489.Google Scholar
  61. Ñberall I, Vrána J, Bartoš J, Šmerda J, Doležel J, Havel L (2003) Isolation of chromosomes from Picea abies L. and their analysis by flow cytometry. Biol Plant (in press).Google Scholar
  62. Valárik M, Bartoš J, Ková›ová P, Kubaláková M, de Jong JH, Doležel J (2003) High-resolution FISH of super-stretched flow sorted plant chromosomes. Plant J (submitted).Google Scholar
  63. Van Dilla MA, Deaven LL, Albright KL et al. (1986) Human chromosome-specific DNA libraries. Construction and availability. Biotechnology 4: 537–552.Google Scholar
  64. Vaz Patto MC, Torres AM, Koblížková A, Macas J, Cubero JI (1999) Development of a genetic composite map of Vicia faba using F2 populations derived from trisomic plants. Theor Appl Genet 98: 736–743Google Scholar
  65. Veuskens J, Marie D, Brown SC, Jacobs M, Negrutiu I (1995) Flow sorting of the Y sex-chromosome in the dioecious plant Melandrium album. Cytometry 21: 363–373.Google Scholar
  66. Vlá›ilová K, Ohri D, Vrána J et al. (2002) Development of flow cytogenetics and physical genome mapping in chickpea (Cicer arietinum L.). Chromosome Res 10: 695–706.Google Scholar
  67. Vrána J, Kubaláková M, Šimková H, Číhalíková J, Lysák MA, Doležel J (2000) Flow-sorting of mitotic chromosomes in common wheat (Triticum aestivum L). Genetics 156: 2033–2041.Google Scholar
  68. Wang ML, Leitch AR, Schwarzacher T, Heslop-Harrison JS, Moore G (1992) Construction of a chromosome-enriched HpaII library from flow-sorted wheat chromosomes. Nulecic Acids Res 20: 1897–1901.Google Scholar
  69. Wanner G, Formanek H, Martin R, Herrmann RG (1991) High resolution scanning electron microscopy of plant chromosomes. Chromosoma 100: 103–109.Google Scholar
  70. Waugh R, Dear PH, Powell W, Machray GC (2002) Physical education-new technologies for mapping plant genomes. Trends Plant Sci 7: 521–523.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Jaroslav Doležel
    • 1
  • Marie Kubaláková
    • 1
  • Jan Bartoš
    • 1
  • Jiří Macas
    • 2
  1. 1.Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental BotanyCzech Republic; Tel
  2. 2.Laboratory of Molecular Cytogenetics, Institute of Plant Molecular BiologyČeské BudějoviceCzech Republic

Personalised recommendations