Chromosome Research

, Volume 11, Issue 8, pp 735–740

Comparative chromosome painting defines the karyotypic relationships among the domestic dog, Chinese raccoon dog and Japanese raccoon dog

  • Wenhui Nie
  • Jinhuan Wang
  • Polina Perelman
  • Alexander S. Graphodatsky
  • Fengtang Yang
Article

Abstract

The Chinese raccoon dog (Nyctereutes procyonoides procyonoides, 2n=54+2–3 B) and Japanese raccoon dog (Nyctereutes p. viverrinus, 2n=38+3–4 B) are two subspecies of the same species. The genome-wide comparative chromosome map between the Japanese raccoon dog and domestic dog (Canis familiaris) has been established by fluorescence in-situ hybridization with a set of domestic dog painting probes. In this study, we established the comparative chromosome map for the Chinese raccoon dog and domestic dog. In total, dog probes specific for the 38 autosomes delineated 41 conserved chromosomal segments in the Chinese raccoon dog. Probes from dog chromosomes 1, 13 and 19 each painted two Chinese raccoon dog chromosome segments. Fifteen dog autosomal probes each hybridized to one Chinese raccoon dog chromosome, while each of the other dog autosomal probes painted to a single Chinese raccoon dog chromosomal arm. Dog X chromosome probe delineated the entire X chromosome of the Chinese raccoon dog; the dog Y chromosome probe hybridized to the pseudoautosomal region at the Xpter as well as the entire Y chromosome of the Chinese raccoon dog. Comparative analysis of the distribution patterns of conserved segments defined by dog paints in the genomes of the Chinese and Japanese raccoon dogs demonstrates that their differences in the karyotypes of these two subspecies could have resulted from eight Robertsonian translocations. The large difference in chromosome number between the Chinese and Japanese raccoon dogs suggests that they should be considered as two distinct species.

chromosome painting karyotype evolution Nyctereutes raccoon dog Robertsonian translocation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Graphodatsky AS, Beklemisheva VR, Dolf G (1995) Highresolution GTG-banding patterns of dog and silver fox chromosomes: description and comparative analysis. Cytogenet Cell Genet 69: 226–231.PubMedGoogle Scholar
  2. Graphodatsky AS, Yang F, O'Brien PCM, Serdukova N, Milne BS, Trifonov V (2000a) A comparative chromosome map of the Arctic fox, red fox and dog defined by chromosome painting and high resolution G-banding. Chromosome Res 8: 253–263.PubMedCrossRefGoogle Scholar
  3. Graphodatsky AS, Yang F, Serdukova N, Perelman P, Zhdanova N, Ferguson-Smith MA (2000b) Dog chromo some-specific paints reveal evolutionary inter-and intrachromosomal rearrangements in the American mink and human. Cytogenet Cell Genet 90: 275–278.PubMedCrossRefGoogle Scholar
  4. Graphodatsky AS, Yang F, O'Brien PCM et al. (2001) Phylogenetic implications of the 38 putative ancestral chromosome segments for four canid species. Cytogenet Cell Genet 92: 243–247.PubMedCrossRefGoogle Scholar
  5. Graphodatsky AS, Yang F, Perelman PL et al. (2002) Comparative molecular cytogenetic studies in the order Carnivora: mapping chromosomal rearrangements onto the phylogenetic tree. Cytogenet Genome Res 96: 137–145.PubMedCrossRefGoogle Scholar
  6. Makinen A, Kuokkanen M, Valtonen M (1986) A chromosome-banding study in the Finnish and the Japanese raccoon dog. Hereditas 105: 97–105.PubMedGoogle Scholar
  7. Nash WG, Wienberg J, Ferguson-Smith MA, Menninger JC, O'Brien SJ (1998) Comparative genomics: tracking chromosome evolution in the family Ursidae using reciprocal chromosome painting. Cytogenet Cell Genet 83: 182–192.PubMedCrossRefGoogle Scholar
  8. Nash WG, Menninger JC, Wienberg J, Padilla-Nash HM, O'Brien SJ (2001) The pattern of phylogenomic evolution of the Canidae. Cytogenet Cell Genet 95: 210–224.PubMedCrossRefGoogle Scholar
  9. Nie W, Wang J, O'Brien PCM, Fu B, Tian Y, Ferguson-Smith MA, Yang F (2002) The genome phylogeny of domestic cat, red panda and five mustelid species revealed by comparative chromosome painting and G-banding. Chromosome Res 10: 209–222.PubMedCrossRefGoogle Scholar
  10. Tian Y, Nie W, Wang J, Yang Y, Yang F (2002) Chromosome painting shows the red panda (Ailurus fulgens) has a conserved karyotype. ACTA Genetica Sinica 29: 124–127 (in Chinese).PubMedGoogle Scholar
  11. Van Gelder RG (1978) A review of canid classification. Am Mus Novitates 2646: 1–10.Google Scholar
  12. Ward OG, Wuster-Hill DH, Ratty FJ, Song Y( 1987) Comparative cytogenetics of Chinese and Japanese raccoon dogs, Nyctereutes procyonoides. Cytogenet Cell Genet 45: 177–186.PubMedGoogle Scholar
  13. Wayne RK, Nash WG, O'Brien SJ (1987a) Chromosomal evolution of the Canidae: I. Species with high diploid numbers. Cytogenet Cell Genet 44: 123–133.PubMedCrossRefGoogle Scholar
  14. Wayne RK, Nash WG, O'Brien SJ (1987b) Chromosomal evolution of the Canidae: II. Divergence from the primitive carnivore karyotype. Cytogenet Cell Genet 44: 134–141.PubMedGoogle Scholar
  15. Yang F, Müller S, Just R, Ferguson-Smith MA, Wienberg J (1997) Comparative chromosome painting in mammals: Human and the Indian muntjac (Muntiacus muntjak vaginalis). Genomics 39: 396–401.PubMedCrossRefGoogle Scholar
  16. Yang F, O'Brien PCM, Milne BS et al. (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62: 189–202.PubMedCrossRefGoogle Scholar
  17. Yang F, Milne BS, Schelling C et al. (2000a) Chromosome identi?cation and assignment of DNA clones in the dog using a red fox and dog comparative map. Chromosome Res 8: 93–100.PubMedCrossRefGoogle Scholar
  18. Yang F, Graphodatsky AS, O'Brien PCM et al. (2000b) Reciprocal chromosome painting illuminates the history of genome evolution of the domestic cat, dog and human. Chromosome Res 8: 393–404PubMedCrossRefGoogle Scholar
  19. Yang F, Graphodatsky AS (2003) Integrated comparative genome maps and their implications for karyotype evolution of carnivores. Chromosomes Today 14: (in press).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Wenhui Nie
    • 1
  • Jinhuan Wang
    • 1
  • Polina Perelman
    • 2
  • Alexander S. Graphodatsky
    • 2
  • Fengtang Yang
    • 1
    • 3
  1. 1.The Chinese Academy of SciencesKey Laboratory of Cellular & Molecular EvolutionKunming, YunnanPeoples Republic of China
  2. 2.Institute of Cytology and GeneticsNovosibirskRussia
  3. 3.University of Cambridge, Madingley Road, Cambridge CB3 0ESUK

Personalised recommendations