Advertisement

Cellular and Molecular Neurobiology

, Volume 24, Issue 5, pp 639–646 | Cite as

The Stroke-Prone Spontaneously Hypertensive Rat: How Good Is It as a Model for Cerebrovascular Diseases?

  • Toru Nabika
  • Zonghu Cui
  • Junichi Masuda
Article

Abstract

1. Cerebrovascular diseases (CVDs) in humans are a mixture of diseases with different etiologies.

2. Although the stroke-prone spontaneously hypertensive rat (SHRSP) cannot represent all types of CVDs, it is probably a good genetic model for particular types such as lacunar infarction and intracerebral hemorrhage.

3. Genetic studies suggested that SHRSP has genetic susceptibility to stroke independent of its severe hypertension. Studies on SHRSP may provide useful information with which to dissect genetic susceptibility to particular types of CVDs.

cerebrovascular diseases SHRSP lacunar infarction genetic susceptibility intracerebral hemorrhage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Arribas, S.M., Gordon, J.F., Daly,C. J., Dominiczak, A.F., and McGrath, J.C. (1996). Confocal microscopic characterization of a lesion in a cerebral vessel of the stroke-prone spontaneously hypertensive rat. Stroke 27:1118–1123.PubMedGoogle Scholar
  2. Cai, H., Yao, H., Ibayashi, S., Uchimura, H., and Fujishima, M. (1998). Photothrombotic middle cerebral artery occlusion in spontaneously hypertensive rats: Influence of substrain, gender, and distal middle cerebral artery pattern on infarct size. Stroke 29:1982–1987.PubMedGoogle Scholar
  3. Hilbert, P., Lindpaintner, K., Beckmann, J. S., Serikawa, T., Soubrier, F., Dubay, C., Cartwright, P., De Gouyon, B., Julier,C., Takahashi, S., Vincent, M., Ganten,D., Georges,M., and Lathrop, G.M. (1991). Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature 353:521–529.PubMedGoogle Scholar
  4. Ikeda, K., Nara, Y., Matsumoto, C., Mashimo, T., Tamada, T., Sawamura, M., Nabika, T., and Yamori, Y. (1996). The region responsible for stroke on chromosome 4 in the stroke-prone spontaneously hypertensive rat. Biochem. Biophys. Res. Commun. 229:658–662.PubMedGoogle Scholar
  5. Jacob, H. J., Lindpaintner, K., Lincoln, S. E., Kusumi, K., Bunker, R. K., Mao, Y.-P., Ganten, D., Dzau, V. J., and Lander, E. S. (1991). Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67:213–224.PubMedGoogle Scholar
  6. Jeffs, B., Clark, J. S., Anderson, N. H., Gratton, J., Brosnan, M. J., Gauguier, D., Reid, J. L., Macrae, I.M., and Dominiczak, A. F. (1997). Sensitivity to cerebral ischaemic insult in a rat model of stroke is determined by a single genetic locus. Nat. Genet. 16:364–367.PubMedGoogle Scholar
  7. Kakinuma, Y., Hama, H., Sugiyama, F., Yagami, K., Goto, K., Murakami, K., and Fukamizu, A. (1998). Impaired blood-brain barrier function in angiotensinogen-deficient mice. Nat. Med. 4:1078–1080.PubMedGoogle Scholar
  8. Kase, C. S., Mohr, J. P., and Caplan, L. R. (1998). Intracerebral hemorrhage. In Barnett, H. J. M., Mohr, J. P., Stein, B. M., and Yatsu, F. M. (eds.), Stroke: Pathophysiology, Diagnosis, and Management, Churchill Livingstone, New York, pp. 649–700.Google Scholar
  9. Kerr, S., Brosnan, M. J., McIntyre, M., Reid, J. L., Dominiczak, A. F., and Hamilton, C. A. (1999). Superoxide anion production is increased in a model of genetic hypertension: Role of endothelium. Hypertension 33:1353–1358.PubMedGoogle Scholar
  10. Kidd, G. A., Dobrucki, L.W., Brovkovych, V., Bohr, D. F., and Malinski, T. (2000). Nitric oxide deficiency contributes to large cerebral infarct size. Hypertension 35:1111–1118.PubMedGoogle Scholar
  11. Mohr, J. P., and Marti-Vilalta, J.-L. (1998). Lacunes. In Barnett, H. J. M., Mohr, J. P., Stein, B. M., and Yatsu, F. M. (eds.), Stroke: Pathophysiology, Diagnosis, and Management, Churchill Livingstone, New York, pp. 599–622.Google Scholar
  12. Ogata, J., Fujishima, M., Tamaki, K., Nakatomi, Y., Ishitsuka, T., and Omae, T. (1980). Stroke-prone spontaneously hypertensive rats as an experimental model of malignant hypertension. Acta Neuropathol. 51:179–184.PubMedGoogle Scholar
  13. Ogata, J., Fujishima, M., Tamaki, K., Nakatomi,Y., Ishitsuka,T., and Omae,T. (1981).Vascular changes underlying cerebral lesions in stroke-prone spontaneously hypertensive rats. Acta Neuropathol. 54:183–188.PubMedGoogle Scholar
  14. Okamoto, K., Yamori, Y., and Nagaoka, A. (1974). Establishment of the stroke-prone spontaneously hypertensive rat. Circ. Res. 33/34:I143–I153.Google Scholar
  15. Rajagopalan, S., Kurz, S., Munzel, T., Tarpey, M., Freeman, B. A., Griendling, K. K., and Harrison, D. G. (1996). Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. J. Clin. Invest. 97:1916–1923.PubMedGoogle Scholar
  16. Rosenblum, W. I. (1996). Editorial comment on “Confocal microscopic characterization of a lesion in a cerebral vessel of the stroke-prone spontaneously hypertensive rat.” Stroke 27:1122–1123.Google Scholar
  17. Rubattu, S., Volpe, M., Kreutz, R., Ganten, U., Ganten, D., and Lindpaintner, K. (1996). Chromosomal mapping of quantitative trait loci contributing to stroke in a rat model of complex human disease.Nat. Genet. 13:429–434.PubMedGoogle Scholar
  18. Tagami, M., Kubota, A., Sunaga, T., Fujino, H., Maezawa, H., Kihara, M., Nara, Y., and Yamori, Y. (1983). Increased transendothelial channel transport of cerebral capillary endothelium in stroke-prone SHR. Stroke 14:591–596.PubMedGoogle Scholar
  19. Tagami, M., Yamagata, K., Ikeda, K., Nara,Y., Fujino, H., Kubota, A., Numano, F., and Yamori,Y. (1998). VitaminEprevents apoptosis in cortical neurons during hypoxia and oxygen reperfusion. Lab. Invest. 78:1415–1429.PubMedGoogle Scholar
  20. Tomimoto, H., Akiguchi, I., Suenaga, T., Nishimura, M., Wakita, H., Nakamura, S., and Kimura, J. (1996). Alterations of the blood-brain barrier and glial cells in white-matter lesions in cerebrovascular and Alzheimer's disease patients. Stroke 27:2096–2074.Google Scholar
  21. Yamori, Y., Horie, R., Tanase, H., Fujiwara, K., Nara, Y., and Lovenberg, W. (1984). Possible role of nutritional factors in the incidence of cerebral lesions in stroke-prone spontaneously hypertensive rats. Hypertension 6:49–53.PubMedGoogle Scholar
  22. Yang, S.-T., Faraci, F. M., and Heistad, D. D. (1993). Effects of cilazapril on cerebral vasodilatation in hypertensive rats. Hypertension 22:150–155.PubMedGoogle Scholar
  23. Zalba, G., Beaumont, F. J., Jose, G. S., Fortuno, A., Fortuno, M. A., Etayo, J. C., and Diez, J. (2000). Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats. Hypertension 35:1055–1061.PubMedGoogle Scholar
  24. Zeng, J., Zhang, Y., Mo, J., Su, Z., and Huang, R. (1998). Two-kidney, two clip renovascular hypertensive rats can be used as stroke-prone rats. Stroke 29:1708–1714.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Toru Nabika
    • 1
  • Zonghu Cui
    • 1
  • Junichi Masuda
    • 1
  1. 1.Department of Laboratory MedicineSchool of Medicine, Shimane Medical UniversityJapan

Personalised recommendations