Cellular and Molecular Neurobiology

, Volume 24, Issue 4, pp 517–533 | Cite as

Processing, Distribution, and Function of VGF, a Neuronal and Endocrine Peptide Precursor

  • Andrea Levi
  • Gian-Luca Ferri
  • Elizabeth Watson
  • Roberta Possenti
  • Stephen R. J. Salton


1. The vgf gene encodes a neuropeptide precursor with a restricted pattern of expression that is limited to a subset of neurons in the central and peripheral nervous systems and to specific populations of endocrine cells in the adenohypophysis, adrenal medulla, gastrointestinal tract, and pancreas. In responsive neurons, vgf transcription is upregulated by neurotrophins, the basis for the original identification of VGF as nerve growth factor- (NGF) inducible in PC12 cells (A. Levi, J. D. Eldridge, and B. M. Paterson, Science229:393–395, 1985).

2. In this review, we shall summarize data concerning the transcriptional regulation of vgf in vitro, the structural organization of the vgf promoter as well as the transcription factors which regulate its activity.

3. On the basis of in situ hybridization and immunohistochemical studies, the in vivo tissue-specific expression of VGF during differentiation and in the adult will be summarized.

4. Parallel biochemical data will be reviewed, addressing the proteolytical processing of the pro-VGF precursor within the secretory compartment of neuroendocrine cells.

5. Finally, analysis of the phenotype of VGF knockout mice will be discussed, implying a nonredundant role of VGF products in the regulation of energy storage and expenditure.

VGF neurotrophin PC12 endocrine feeding metabolism NGF BDNF 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahima, R. S., Saper, C. B., Flier, J. S., and Elmquist, J. K. (2000). Leptin regulation of neuroendocrine systems. Front. Neuroendocrinol. 21:263–307.Google Scholar
  2. Altshuler, D., and Hirschhorn, J. N. (1999). Upsetting the balance: VGF and the regulation of body weight. Neuron 23:415–417.Google Scholar
  3. Barsh, G. S., Farooqi, I. S., and O'Rahilly, S. (2000). Genetics of body-weight regulation. Nature 404:644–651.Google Scholar
  4. Baybis, M., and Salton, S. R. (1992). Nerve growth factor rapidly regulates VGF gene transcription through cycloheximide sensitive and insensitive pathways. FEBS Lett. 308:202–206.Google Scholar
  5. Benson, D. L., and Salton, S. R. (1996). Expression and polarization of VGF in developing hippocampal neurons. Brain Res. Dev. Brain Res. 96:219–228.Google Scholar
  6. Bonni, A., Ginty, D. D., Dudek, H., and Greenberg, M. E. (1995). Serine 133-phosphorylated CREB induces transcription via a cooperative mechanism that may confer specificity to neurotrophin signals. Mol. Cell. Neurosci. 6:168–183.Google Scholar
  7. Canu, N., Possenti, R., Ricco, A. S., Rocchi, M., and Levi, A. (1997a). Cloning, structural organization analysis, and chromosomal assignment of the human gene for the neurosecretory protein VGF. Genomics 45:443–446.Google Scholar
  8. Canu, N., Possenti, R., Rinaldi, A. M., Trani, E., and Levi, A. (1997b). Molecular cloning and characterization of the human VGF promoter region. J. Neurochem. 68:1390–1399.Google Scholar
  9. Cho, K. O., Skarnes, W. C., Minsk, B., Palmieri, S., Jackson-Grusby, L., and Wagner, J. A. (1989). Nerve growth factor regulates gene expression by several distinct mechanisms. Mol. Cell. Biol. 9:135–143.Google Scholar
  10. D'Arcangelo, G., Habas, R., Wang, S., Halegoua, S., and Salton, S. R. (1996). Activation of codependent transcription factors is required for transcriptional induction of the vgf gene by nerve growth factor and Ras. Mol. Cell. Biol. 16:4621–4631.Google Scholar
  11. Davis, B. M., Albers, K. M., Seroogy, K. B., and Katz, D. M. (1994). Overexpression of nerve growth factor in transgenic mice induces novel sympathetic projections to primary sensory neurons. J. Comp. Neurol. 349:464–474.Google Scholar
  12. Eagleson, K. L., Fairfull, L. D., Salton, S. R., and Levitt, P. (2001). Regional differences in neurotrophin availability regulate selective expression of VGF in the developing limbic cortex. J. Neurosci. 21:9315–9324.Google Scholar
  13. Ferri, G. L., Levi, A., and Possenti, R. (1992). A novel neuroendocrine gene product: Selective VGF8a gene expression and immuno-localisation of the VGF protein in endocrine and neuronal populations. Brain Res. Mol. Brain Res. 13:139–143.Google Scholar
  14. Ferri, G. L., Albers, K. M., and Possenti, R. (1998). Changes in the neurotrophin-inducible protein “VGF” in mice hyperexpressing NGF. Soc. Neurosci. Abst. 24:630.Google Scholar
  15. Ferri, G. L., Gaudio, R. M., Cossu, M., Rinaldi, A. M., Polak, J. M., Berger, P., and Possenti, R. (1995). The “VGF” protein in rat adenohypophysis: Sex differences and changes during the estrous cycle and after gonadectomy. Endocrinology 136:2244–2251.Google Scholar
  16. Greene, L. A., and Tischler, A. S. (1976). Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. U.S.A. 73:2424–2428.Google Scholar
  17. Hahm, S., Fekete, C., Mizuno, T. M., Windsor, J., Yan, H., Boozer, C. N., Lee, C., Elmquist, J. K., Lechan, R. M., Mobbs, C. V., and Salton, S. R. (2002). VGF is required for obesity induced by diet, gold thioglucose treatment and agouti, and is differentially regulated in POMC-and NPY-containing arcuate neurons in response to fasting. J. Neurosci. 22:6929–6938.Google Scholar
  18. Hahm, S., Mizuno, T. M., Wu, T. J., Wisor, J. P., Priest, C. A., Kozak, C. A., Boozer, C. N., Peng, B., McEvoy, R. C., Good, P., Kelley, K. A., Takahashi, J. S., Pintar, J. E., Roberts, J. L., Mobbs, C. V., and Salton, S. R. (1999). Targeted deletion of the Vgf gene indicates that the encoded secretory peptide precursor plays a novel role in the regulation of energy balance. Neuron 23:537–548.Google Scholar
  19. Harper, M. E., and Himms-Hagen, J. (2001). Mitochondrial efficiency: Lessons learned from transgenic mice. Biochim. Biophys. Acta 1504:159–172.Google Scholar
  20. Hawley, R. J., Scheibe, R. J., and Wagner, J. A. (1992). NGF induces the expression of the VGF gene through a cAMP response element. J. Neurosci. 12:2573–2581.Google Scholar
  21. Hevroni, D., Rattner, A., Bundman, M., Lederfein, D., Gabarah, A., Mangelus, M., Silverman, M. A., Kedar, H., Naor, C., Kornuc, M., Hanoch, T., Seger, R., Theill, L. E., Nedivi, E., Richter-Levin, G., and Citri, Y. (1998). Hippocampal plasticity involves extensive gene induction and multiple cellular mechanisms. J. Mol. Neurosci. 10:75–98.Google Scholar
  22. Kanemasa, K., Okamura, H., Kodama, T., and Ibata, Y. (1995a). Induction of VGF mRNA in neurons of the rat nucleus tractus solitarius and the dorsal motor nucleus of vagus in duodenal ulceration by cysteamine. Brain Res. Mol. Brain Res. 32:55–62.Google Scholar
  23. Kanemasa, K., Okamura, H., Kodama, T., Kashima, K., and Ibata, Y. (1995b). Time course of the induction of VGF mRNA in the dorsal vagal complex in rats with cysteamine-induced peptic ulcers. Brain Res. Mol. Brain Res. 34:309–314.Google Scholar
  24. Kaplan, D. R., and Miller, F. D. (2000). Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10:381–391.Google Scholar
  25. Laslop, A., Mahata, S. K., Wolkersdorfer, M., Mahata, M., Srivastava, M., Seidah, N. G., Fischer-Colbrie, R., and Winkler, H. (1994). Large dense-core vesicles in rat adrenal after reserpine: Levels of mRNAs of soluble and membrane-bound constituents in chromaffin and ganglion cells indicate a biosynthesis of vesicles with higher secretory quanta. J. Neurochem. 62:2448–2456.Google Scholar
  26. Levi, A., Eldridge, J. D., and Paterson, B. M. (1985). Molecular cloning of a gene sequence regulated by nerve growth factor. Science 229:393–395.Google Scholar
  27. Lewin, G. R., and Barde, Y.-A. (1996). Physiology of the Neurotrophins. Ann. Rev. Neurosci. 19:289–317.Google Scholar
  28. Li, L., Suzuki, T., Mori, N., and Greengard, P. (1993). Identification of a functional silencer element involved in neuron-specific expression of the synapsin I gene. Proc. Natl. Acad. Sci. U.S.A. 90:1460–1464.Google Scholar
  29. Liu, J. W., Andrews, P. C., Mershon, J. L., Yan, C., Allen, D. L., and Ben-Jonathan N. (1994). Peptide V: A VGF-derived neuropeptide purified from bovine posterior pituitary. Endocrinology 135:2742–2748.Google Scholar
  30. Lombardo, A., Rabacchi, S. A., Cremisi, F., Pizzorusso, T., Cenni, M. C., Possenti R., Barsacchi G., and Maffei L. (1995). A developmentally regulated nerve growth factor-induced gene, VGF, is expressed in geniculocortical afferents during synaptogenesis. Neuroscience 65:997–1008.Google Scholar
  31. Luc, P. V., and Wagner, J. A. (1997). Regulation of the neural-specific gene VGF in PC12 cells. Identification of transcription factors interacting with NGF-responsive elements. J. Mol. Neurosci. 8:223–241.Google Scholar
  32. Mahata, M., Hortnagl, H., Mahata, S. K., Fischer-Colbrie, R., and Winkler, H. (1993a). Messenger RNA levels of chromogranin B, secretogranin II, and VGF in rat brain after AF64A-induced septohippocampal cholinergic lesions. J. Neurochem. 61:1648–1656.Google Scholar
  33. Mahata, S. K., Mahata, M., Fischer-Colbrie, R., and Winkler, H. (1993b). In situ hybridization: mRNA levels of secretogranin II, VGF and peptidylglycine alpha-amidating monooxygenase in brain of salt-loaded rats. Histochemistry 99:287–293.Google Scholar
  34. Mahata, S. K., Mahata, M., Hortnag, H., Fischer-Colbrie, R., Steiner, H. J., Dietze, O., and Winkler, H. (1993c). Concomitant changes of messenger ribonucleic acid levels of secretogranin II, VGF, vasopressin and oxytocin in the paraventricular nucleus of rats after adrenalectomy and during lactation. J. Neuroendocrinol. 5:323–330.Google Scholar
  35. Mandolesi, G., Gargano, S., Pennuto, M., Illi, B., Molfetta, R., Soucek, L., Mosca, L., Levi, A., Jucker, R., and Nasi, S. (2002). NGF-dependent and tissue-specific transcription of vgf is regulated by a CREB-p300 and bHLH factor interaction. FEBS Lett. 510:50–56.Google Scholar
  36. Miller, F. D., and Kaplan, D. R. (2002). Neurobiology. TRK makes the retrograde. Science 295:1471–1473.Google Scholar
  37. Patapoutian, A., and Reichardt, L. F. (2001). Trk receptors: Mediators of neurotrophin action. Curr. Opin. Neurobiol. 11:272–280.Google Scholar
  38. Piccioli, P., Di Luzio, A., Amann, R., Schuligoi, R., Surani, M. A., Donnerer, J., and Cattaneo, A. (1995). Neuroantibodies: Ectopic expression of a recombinant anti-substance P antibody in the central nervous system of transgenic mice. Neuron 15:373–384.Google Scholar
  39. Possenti, R., Di Rocco, G., Nasi, S., and Levi, A. (1992). Regulatory elements in the promoter region of vgf, a nerve growth factor-inducible gene. Proc. Natl. Acad. Sci. U.S.A. 89:3815–3819.Google Scholar
  40. Possenti, R., Eldridge, J. D., Paterson, B. M., Grasso, A., and Levi, A. (1989). A protein induced by NGF in PC12 cells is stored in secretory vesicles and released through the regulated pathway. EMBO J. 8:2217–2223.Google Scholar
  41. Possenti, R., Rinaldi, A. M., Ferri, G. L., Borboni, P., Trani, E., and Levi, A. (1999). Expression, processing, and secretion of the neuroendocrine VGF peptides by INS-1 cells. Endocrinology 140:3727–3735.Google Scholar
  42. Puigserver, P., Adelmant, G., Wu, Z., Fan, M., Xu, J., O'Malley, B., and Spiegelman, B. M. (1999). Activation of PPARgamma coactivator-1 through transcription factor docking. Science 286:1368–1371.Google Scholar
  43. Salton, S. R. (1991). Nucleotide sequence and regulatory studies of VGF, a nervous system-specific mRNA that is rapidly and relatively selectively induced by nerve growth factor. J. Neurochem. 57:991–996.Google Scholar
  44. Salton, S. R., Fischberg, D. J., and Dong, K. W. (1991). Structure of the gene encoding VGF, a nervous system-specific mRNA that is rapidly and selectively induced by nerve growth factor in PC12 cells. Mol. Cell. Biol. 11:2335–2349.Google Scholar
  45. Salton, S. R., Ferri, G. L., Hahm, S., Snyder, S. E., Wilson, A. J., Possenti, R., and Levi, A. (2000). VGF: A novel role for this neuronal and neuroendocrine polypeptide in the regulation of energy balance. Front. Neuroendocrinol. 21:199–219.Google Scholar
  46. Schwartz, M. W., Woods, S. C., Porte, D., Jr., Seeley, R. J., and Baskin, D. G. (2000). Central nervous system control of food intake. Nature 404:661–671.Google Scholar
  47. Seidah, N. G., and Chretien, M. (1999). Proprotein and prohormone convertases: A family of subtilases generating diverse bioactive polypeptides. Brain Res. 848:45–62.Google Scholar
  48. Snyder, S. E., and Salton, S. R. (1998). Expression of VGF mRNA in the adult rat central nervous system. J. Comp. Neurol. 394:91–105.Google Scholar
  49. Snyder, S. E., Pintar, J. E., and Salton, S. R. (1998a). Developmental expression of VGF mRNA in the prenatal and postnatal rat. J. Comp. Neurol. 394:64–90.Google Scholar
  50. Snyder, S. E., Cheng, H. W., Murray, K. D., Isackson, P. J., McNeill, T. H., and Salton, S. R. (1998b). The messenger RNA encoding VGF, a neuronal peptide precursor, is rapidly regulated in the rat central nervous system by neuronal activity, seizure and lesion. Neuroscience 82:7–19.Google Scholar
  51. Stark, M., Danielsson, O., Griffiths, W. J., Jornvall, H., and Johansson, J. (2001). Peptide repertoire of human cerebrospinal fluid: Novel proteolytic fragments of neuroendocrine proteins. J. Chromatogr. B Biomed. Sci. Appl. 754:357–367.Google Scholar
  52. Steiner, D. F. (1998). The proprotein convertases.Curr. Opin. Chem. Biol. 2:31–39.Google Scholar
  53. Trani, E., Ciotti, T., Rinaldi, A. M., Canu, N., Ferri, G. L., Levi, A., and Possenti, R. (1995). Tissue-specific processing of the neuroendocrine protein VGF. J. Neurochem. 65:2441–2449.Google Scholar
  54. Tran, i E., Giorgi, A., Canu, N., Amadoro, G., Rinaldi, A. M., Halban, P. A., Ferri, G. L., Possenti, R., Schinina, M. E., and Levi, A. (2002). Isolation and characterization of VGF peptides in rat brain. Role of PC1/3 and PC2 in the maturation of VGF precursor. J. Neurochem. 81:565–574.Google Scholar
  55. Tschop, M., Smiley, D. L., and Heiman, M. L. (2000). Ghrelin induces adiposity in rodents. Nature 407:908–913.Google Scholar
  56. van den Pol, A. N., Decavel, C., Levi, A., and Paterson, B. (1989). Hypothalamic expression of a novel gene product, VGF: Immunocytochemical analysis. J. Neurosci. 9:4122–4137.Google Scholar
  57. van den Pol, A. N., Bina, K., Decavel, C., and Ghosh, P. (1994). VGF expression in the brain. J. Comp. Neurol. 347:455–469.Google Scholar
  58. Vaudry, D., Stork, P. J., Lazarovici, P., and Eiden, L. E. (2002). Signaling pathways for PC12 cell differentiation: Making the right connections. Science 296:1648–1649.Google Scholar
  59. Wren, A. M., Small, C. J., Abbott, C. R., Jethwa, P. H., Kennedy, A. R., Murphy, K. G., Stanley, S. A., Zollner, A. N., Ghatei, M. A., and Bloom, S. R. (2002). Hypothalamic actions of neuromedin U. Endocrinology 143:4227–4234.Google Scholar
  60. Wren, A. M., Small, C. J., Ward, H. L., Murphy, K. G., Dakin, C. L., Taheri, S., Kennedy, A. R., Roberts, G. H., Morgan, D. G., Ghatei, M. A., and Bloom, S. R. (2000). The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 141:4325–4328.Google Scholar
  61. Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., Cinti, S., Lowell, B., Scarpulla, R. C., and Spiegelman, B. M. (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Andrea Levi
    • 1
  • Gian-Luca Ferri
    • 2
  • Elizabeth Watson
    • 3
  • Roberta Possenti
    • 4
  • Stephen R. J. Salton
    • 3
  1. 1.Department of NeuroscienceUniversity of Tor VergataRomeItaly
  2. 2.Neuro-&-Endocrine Research, Department of CytomorphologyUniversity of Cagliari at MonserratoMonserratoCagliari, Italy
  3. 3.Fishberg Research Center for NeurobiologyMount Sinai School of MedicineNew YorkNew York
  4. 4.Institute of NeurobiologyNational Research CouncilRomeItaly

Personalised recommendations