Cellular and Molecular Neurobiology

, Volume 24, Issue 1, pp 1–24 | Cite as

Nasu–Hakola Disease (Polycystic Lipomembranous Osteodysplasia with Sclerosing Leukoencephalopathy—PLOSL): A Dementia Associated with Bone Cystic Lesions. From Clinical to Genetic and Molecular Aspects

  • Marino Muxfeldt Bianchin
  • Heraldo M. Capella
  • Daniel Loureiro Chaves
  • Mário Steindel
  • Edmundo C. Grisard
  • Gerson Gandi Ganev
  • João Péricles da SilvaJr.
  • Evaldo Schaeffer Neto
  • Mônica Aparecida Poffo
  • Roger Walz
  • Carlos G. CarlottiJr.
  • Américo C. Sakamoto


The authors review the clinical, radiological, electrophysiological, pathological, and molecular aspects of Nasu–Hakola disease (polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy or PLOSL). Nasu-Hakola disease is a unique disease characterized by multiple bone cysts associated with a peculiar form of neurodegeneration that leads to dementia and precocious death usually during the fifth decade of life. The diagnosis can be established on the basis of clinical and radiological findings. Recently, molecular analysis of affected families revealed mutations in the DAP12 (TYROBP) or TREM2 genes, providing an interesting example how mutations in two different subunits of a multi-subunit receptor complex result in an identical human disease phenotype. The association of PLOSL with mutations in the DAP12 or TREM2 genes has led to improved diagnosis of affected individuals. Also, the possible roles of the DAP12/TREM2 signaling pathway in microglia and osteoclasts in humans are just beginning to be elucidated. Some aspects of this peculiar signaling pathway are discussed here.

frontal dementia frontotemporal dementia microglia osteoclasts KARAP DAP12 TYROBP TREM2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrikossoff, A. (1929). Über das Schicksal der spontan auftretenden Fettgranulome (lipophagen Granulome). Verh. Dtsch. Ges. Pathol. 24:57-64.Google Scholar
  2. Ahn, S., Yoo, M., Lee, S., and Choi, E. (1996). A clinical and histopathological study of 22 patients with membranous lipodystrophy. Clin. Exp. Dermatol. 21:269-272.Google Scholar
  3. Akai, M., Tateishi, A., Cheng, C. H., Morii, K., Abe, M., Ohno, T., and Ben, M. (1977). Membranous lipodystrophy: A clinicopathological study of six cases. J. Bone Joint Surg. Am. 59:802-809.Google Scholar
  4. Albright, A. V., Shieh, J. T., Itoh, T., Lee, B., Pleasure, D., O'Connor, M. J., Doms, R. W., and Gonzalez-Scarano, F. (1999). Microglia express CCR5, CXCR4, and CCR3, but of these, CCR5 is the principal coreceptor for human immunodeficiency virus type 1 dementia isolates. J. Virol. 73:205-213.Google Scholar
  5. Amano, N., Iwabuchi, K., Sakai, H., Yagishita, S., Itoh, Y., Iseki, E., Yokoi, S., Arai, N., and Kinoshita, J. (1987). Nasu-Hakola's disease (membranous lipodystrophy). Acta Neuropathol. (Berl.) 74:294-299.Google Scholar
  6. Araki, T., Ohba, H., Monzawa, S., Sakuyama, K., Hachiya, J., Seki, T., Takahashi, Y., and Yamaguchi, M. (1991). Membranous lipodystrophy: MR imaging appearance of the brain. Radiology 180:793-797.Google Scholar
  7. Bacon, K. B., and Harrison, J. K. (2000). Chemokines and their receptors in neurobiology: Perspectives in physiology and homeostasis. J. Neuroimmunol. 104:92-97.Google Scholar
  8. Bakker, A. B., Baker, E., Sutherland, G. R., Phillips, J. H., and Lanier, L. L. (1999). Myeloid DAP12-associating lectin (MDL)-1 is a cell surface receptor involved in the activation of myeloid cells. Proc. Natl. Acad. Sci. U.S.A. 96:9792-9796.Google Scholar
  9. Bakker, A. B., Hoek, R. M., Cerwenka, A., Blom, B., Lucian, L., McNeil, T., Murray, R., Phillips, L. H., Sedgwick, J. D., and Lanier, L. L. (2000). DAP12-deficient mice fail to develop autoimmunity due to impaired antigen priming. Immunity 13:345-353.Google Scholar
  10. Banchereau, J., and Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature. 19:245-252.Google Scholar
  11. Bird, T. D., Koerker, R. M., Leaird, B. J., Vlcek, B. W., and Thorning, D. R. (1983). Lipomembranous polycystic osteodysplasia (brain, bone, and fat disease): A genetic cause of presenile dementia. Neurology 33:81-86.Google Scholar
  12. Blair, H. C. (1998). How the osteoclast degrades bone. Bioessays 20:837-846.Google Scholar
  13. Blair, H. C., Zaidi, M., and Schlesinger, P. H. (2002). Mechanisms balancing skeletal matrix synthesis and degradation. Biochem. J. 364:329-341.Google Scholar
  14. Bouchon, A., Dietrich, J., and Colonna, M. (2000). Cutting edge: Inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J. Immunol. 164:4991-4995.Google Scholar
  15. Bouchon, A., Hernandez-Munain, C., Cella, M., and Colonna, M. (2001). A DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells. J. Exp. Med. 194:1111-1122.Google Scholar
  16. Brown, D. R. (2001). Microglia and prion disease. Microsc. Res. Tech. 54:71-80.Google Scholar
  17. Campbell, K. S., and Colonna, M. (1999). DAP12: A key accessory protein for relaying signals by natural killer cell receptors. Int. J. Biochem. Cell. Biol. 31:631-636.Google Scholar
  18. Chabas, D., Baranzini, S. E., Mitchell, D., Bernard, C. C., Rittling, S. R., Denhardt, D. T., Sobel, R. A., Lock, C., Karpuj, M., Pedotti, R., Heller, R., Oksenberg, J. R., and Steinman, L. (2001). The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294:1731-1735.Google Scholar
  19. Chung, D. H., Seaman, W. E., and Daws, M. R. (2002). Characterization of TREM-3, an activating receptor on mouse macrophages: Definition of a family of single Ig domain receptors on mouse chromosome 17. Eur. J. Immunol. 32:59-66.Google Scholar
  20. Compston, J. E. (2002). Bone marrow and bone: A functional unit. J. Endocrinol. 173:387-394.Google Scholar
  21. Coraci, I. S., Husemann, J., Berman, J. W., Hulette, C., Dufour, J. H., Campanella, G. K., Luster, A. D., Silverstein, S. C., and El-Khoury, J. B. (2002). CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer's disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am. J. Pathol. 160:101-112.Google Scholar
  22. Cummings, J. L. (1986). Subcortical dementia. Neuropsychology, neuropsychiatry, and pathophysiology. Br. J. Psychiatr 149:682-697.Google Scholar
  23. Diefenbach, A., Tomasello, E., Lucas, M., Jamieson, A. M., Hsia, J. K., Vivier, E., and Raulet, D. H. (2002). Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat. Immunol. 3:1142-1149.Google Scholar
  24. Deisenhammer, F., Willeit, J., Schmidauer, C., Kiechl, S., and Pohl, P. (1993). [Membranous lipodystrophy (Nasu-Hakola disease)]. Nervenarzt. 64:263-265.Google Scholar
  25. Dietrich, J., Cella, M., Seiffert, M., Buhring, H. J., and Colonna, M. (2000). Cutting edge: Signal-regulatory protein beta 1 is a DAP12-associated activating receptor expressed in myeloid cells. J. Immunol. 164:9-12.Google Scholar
  26. Ducy, P., Schinke, T., and Karsenty, G. (2000). The osteoblast: A sophisticated fibroblast under central surveillance. Science 289:1501-1504.Google Scholar
  27. Duong, L. T., and Rodan, G. A. (2001). Regulation of osteoclast formation and function. Ver. Endocr. Metab. Disord. 2:95-104.Google Scholar
  28. Gallucci, S., Lolkema, M., and Matzinger, P. (1999). Natural adjuvants: Endogeneous activators of dendritic cells. Nat. Med. 11:1249-1255.Google Scholar
  29. Gebicke-Haerter, P. J. (2001). Microglia in neurodegeneration: Molecular aspects. Microsc. Res. Tech. 54:47-58.Google Scholar
  30. Gebicke-Haerter, P. J., Spleiss, O., Ren, L. Q., Li, H., Dichmann, S., Norgauer, J., and Boddeke, H. W. (2001). Microglial chemokines and chemokine receptors. Prog. Brain Res. 132:525-532.Google Scholar
  31. Gebicke-Haerter, P. J., Van Calker, D., Norenberg, W., and Illes, P. (1996). Molecular mechanisms of microglial activation. plications for regeneration and neurodegenerative diseases. Neurochem. Int. 29:1-12.Google Scholar
  32. Gilfillan, S., Ho, E. L., Cella, M., Yokoyama, W. M., and Colonna, M. (2002). NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat. Immunol. 3:1150-1155.Google Scholar
  33. Gonzalez-Scarano, F., and Baltuch, G. (1999). Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci. 22:219-240.Google Scholar
  34. Greenfield, E. M., Bi, Y., and Miyauchi, A. (1999). Regulation of osteoclast activity. Life Sci. 65:1087-1102.Google Scholar
  35. Hakola, H. P. (1972). Neuropsychiatric and genetic aspects of a new hereditary disease characterized by progressive dementia and lipomembranous polycystic osteodysplasia. Acta Psychiatr. Scand. Suppl. 232:1-173.Google Scholar
  36. Hakola, H. P., and Karjalanen, P. (1975). Bone mineral content in hereditary polycystic osteodysplasia associated with progressive dementia. Acta. Radiol. Diagn. 16:385-392.Google Scholar
  37. Hakola, H. P. (1998). Benton's Visual Retention Test in patients with polycystic lipomembranous dysplasia with sclerosing leukoencephalopathy. Dement. Geriatr. Cogn. Disord. 9:39-43.Google Scholar
  38. Hakola, H. P., Jarvi, O. H., and Sourander, P. (1970). Osteodysplasia polycystica hereditaria combined with sclerosing leucoencephalopathy, a new entity of the dementia praesenilis group. Acta Neurol. Scand. 46(Suppl 43):79.Google Scholar
  39. Hakola, H. P., Karjalainen, P., and Virtama, P. (1988). Bone scintigraphy in polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy. Nucl. Med. Commun. 9:1005-1011.Google Scholar
  40. Hakola, H. P., and Partanen, V. S. (1983). Neurophysiological findings in the hereditary presenile dementia characterised by polycystic lipomembranous osteodysplasia and sclerosing leukoencephalopathy. J. Neurol. Neurosurg. Psychiatry 46:515-520.Google Scholar
  41. Hakola, H. P., and Puranen, M. (1993). Neuropsychiatric and brain CT findings in polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy. Acta Neurol. Scand. 88:370-375.Google Scholar
  42. Halliday, G., Robinson, S. R., Shepherd, C., and Kril, J. (2000). Alzheimer's disease and inflammation: A review of cellular and therapeutic mechanisms. Clin. Exp. Pharmacol. Physiol. 27:1-8.Google Scholar
  43. Harada, K. (1975). [A case of “membranous lipodystrophy (Nasu)” with emphasis on psychiatric and neuropathologic aspects (Author's Transl.)]. Folia Psychiatr. Neurol. Jpn. 29:169-177.Google Scholar
  44. Hasegawa, Y., and Inagaki, Y. (1983). Membranous lipodystrophy (lipomembranous polycystic osteodysplasia). Two case reports. Clin. Orthop. 12:229-232.Google Scholar
  45. Hill, P. A. (1998). Bone remodelling. Br. J. Orthod. 25:101-107.Google Scholar
  46. Hull, M., Lieb, K., and Fiebich, B. L. (2002). Pathways of inflammatory activation in Alzheimer's disease: Potential targets for disease modifying drugs. Curr. Med. Chem. 9:83-88.Google Scholar
  47. Kalimo, H., Sourander, P., Jarvi, O., and Hakola, P. (1994). Vascular changes and blood-brain barrier damage in the pathogenesis of polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (membranous lipodystrophy). Acta Neurol. Scand. 89:353-361.Google Scholar
  48. Kaul, M., Garden, G. A., and Lipton, S. A. (2001). Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410:988-994.Google Scholar
  49. Kaul, M., and Lipton, S. A. (1999). Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc. Natl. Acad. Sci. U.S.A. 96:8212-8216.Google Scholar
  50. Kenny, A. M., and Raisz, L. G. (2002). Mechanisms of bone remodeling: Implications for clinical practice. J. Reprod. Med. 47:63-70.Google Scholar
  51. Kitajima, I., Kuriyama, M., Usuki, F., Izumo, S., Osame, M., Suganuma, T., Murata, F., and Nagamatsu, K. (1989). Nasu-Hakola disease (membranous lipodystrophy). Clinical, histopathological and biochemical studies of three cases. J. Neurol. Sci. 91:35-52.Google Scholar
  52. Kocer, N., Dervisoglu, S., Ersavasti, G., Altug, A., and Cokyuksel, O. (1994). Case report 867. Membranous lipodystrophy (polycystic lipomembranous osteodysplasia). Skeletal Radiol 23:577-579.Google Scholar
  53. Kondo, T., Takahashi, K., Kohara, N., Takahashi, Y., Hayashi, S., Takahashi, H., Matsuo, H., Yamazaki, M., Inoue, K., Miyamoto, K., and Yamamura, T. (2002). Heterogeneity of presenile dementia with bone cysts (Nasu-Hakola disease). Three genetic forms. Neurology 59:1105-1107.Google Scholar
  54. Langford, D., and Masliah, E. (2001). Crosstalk between components of the blood brain barrier and cells of the CNS in microglial activation in AIDS. Brain Pathol. 11:306-312.Google Scholar
  55. Lanier, L. L. (1998). NK cell receptors. Annu. Rev. Immunol. 16:359-393.Google Scholar
  56. Lanier, L. L., and Bakker, A. B. (2000). The ITAM-bearing transmembrane adaptor DAP12 in lymphoid and myeloid cell function. Immunol. Today 21:611-614.Google Scholar
  57. Lanier, L. L., Corliss, B., Wu, J., and Phillips, J. H. (1998a). Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity 8:693-701.Google Scholar
  58. Lanier, L. L., Corliss, B. C., Wu, J., Leong, C., and Phillips, J. H. (1998b). Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature. 391:703-707.Google Scholar
  59. Machinami, R. (1984). Incidence of membranous lipodystrophy-like change among patients with limb necrosis caused by chronic arterial obstruction. Arch. Pathol. Lab. Med. 108:823-826.Google Scholar
  60. Machinami, R. (2001). [Membranous lipodystrophy of the bone]. Ann. Pathol. 21:524-528.Google Scholar
  61. Malandrini, A., Scarpini, C., Palmeri, S., Villanova, M., Parrotta, E., Tripodi, S., Giani, S., DeFalco, D., and Guazzi, G. C. (1996). Palatal myoclonus and unusual MRI findings in a patient with membranous lipodystrophy. Brain. Dev. 18:59-63.Google Scholar
  62. Manolagas, S. C. (2000). Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev. 21:115-137.Google Scholar
  63. Matsushita, M., Oyanagi, S., Hanawa, S., Shiraki, H., and Kosaka, K. (1981). Nasu-Hakola's disease (membranous lipodystrophy). A case report. Acta Neuropathol. (Berl.) 54:89-93.Google Scholar
  64. McVicar, D. W., Taylor, L. S., Gosselin, P., Willette-Brown, J., Mikhael, A. I., Geahlen, R. L., Nakamura, M. C., Linnemeyer, P., Seaman, W. E., Anderson, S. K., Ortaldo, J. R., and Mason, L. H. (1998). DAP12-mediated signal transduction in natural killer cells. A dominant role for the Syk protein-tyrosine kinase. J. Biol. Chem. 273:32934-32942.Google Scholar
  65. Merrill, J. E. (1992). Proinflammatory and antiinflammatory cytokines in multiple sclerosis and central nervous system acquired immunodeficiency syndrome. J. Immunother. 12:167-170.Google Scholar
  66. Minagar, A., Shapshak, P., Fujimura, R., Ownby, R., Heyes, M., and Eisdorfer, C. (2002). The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J. Neurol. Sci. 202:13.Google Scholar
  67. Mitrovic, B., Martin, F. C., Charles, A. C., Ignarro, L. J., Anton, P. A., Shanahan, F., and Merrill, J. E. (1994). Neurotransmitters and cytokines in CNS pathology. Prog. Brain. Res. 103:319-330.Google Scholar
  68. Miyazu, K., Kobayashi, K., Fukutani, Y., Nakamura, I., Hasegawa, H., Yamaguchi, N., and Saitoh, T. (1991). Membranous lipodystrophy (Nasu-Hakola disease) with thalamic degeneration: Report of an autopsied case. Acta Neuropathol. (Berl.) 82:414-419.Google Scholar
  69. Moretta, A., Bottino, C., Vitale, M., Pende, D., Cantoni, C., Mingari, M. C., et al. (2001). Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Ver. Immunol. 19:197-223.Google Scholar
  70. Motohashi, N., Shinohara, M., Shioe, K., Fukuzawa, H., Akiyama, Y., and Kariya, T. (1995). A case of membranous lipodystrophy (Nasu-Hakola disease) with unique MRI findings. Neuroradiology 37:549-550.Google Scholar
  71. Nakamura, Y. (2002). Regulating factors for microglial activation. Biol. Pharm. Bull. 25:945-953.Google Scholar
  72. Nasu, T., Tsukahara, Y., and Terayama, K. (1973). A lipid metabolic disease--“membranous lipodystrophy”--an autopsy case demonstrating numerous peculiar membrane-structures composed of compound lipid in bone and bone marrow and various adipose tissues. Acta Pathol. Jpn. 23:539-558.Google Scholar
  73. Ohtani, Y., Miura, S., Tamai, Y., Kojima, H., and Kashima, H. (1979). Neutral lipid and sphingolipid composition of the brain of a patient with membranous lipodystrophy. J. Neurol. 220:77-82.Google Scholar
  74. Okada, K., Hoshi, N., Kawamura, K., Sato, K., and Yamamoto, M. (1999). Membranocystic lesion in lumbar yellow ligament. Spine. 24:1147-1150.Google Scholar
  75. Paloneva, J., Autti, T., Raininko, R., Partanen, J., Salonen, O., Puranen, M., Hakola, P., and Haltia, M. (2001). CNS manifestations of Nasu-Hakola disease: A frontal dementia with bone cysts. Neurology 56:1552-1558.Google Scholar
  76. Paloneva, J., Kestila, M., Wu, J., Salminen, A., Bohling, T., Ruotsalainen, V., Hakola, P., Bakker, A. B., Phillips, J. H., Pekkarinen, P., Lanier, L. L., Timonen, T., and Peltonen, L. (2000). Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat. Genet. 25:357-361.Google Scholar
  77. Paloneva, J., Manninen, T., Christman, G., Hovanes, K., Mandelin, J., Adolfsson, R., Bianchin, M., Bird, T., Miranda, R., Salmaggi, A., Tranebjaerg, L., Konttinen, Y., and Peltonen, L. (2002). Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am. J. Hum. Genet. 71:656-662.Google Scholar
  78. Pazzaglia, U. E., Benazzo, F., Byers, P. D., Riboni, L., and Ceciliani, L. (1987). Pathogenesis of membranous lipodystrophy. Case report and review of the literature. Clin. Orthop. 279-287.Google Scholar
  79. Pekkarinen, P., Hovatta, I., Hakola, P., Jarvi, O., Kestila, M., Lenkkeri, U., Adolfsson, R., Holmgren, G., Nylander, P. O., Tranebjaerg, L., Terwilliger, J. D., Lonnqvist, J., and Peltonen, L. (1998). Assignment of the locus for PLO-SL, a frontal-lobe dementia with bone cysts, to 19q13. Am. J. Hum. Genet. 62:362-372.Google Scholar
  80. Preziuso, L., Muncibi, F., and Aglietti, F. G. (1992). A case of membranous lipodystrophy with skeletal involvement. Chir. Organi. Mov. 77:205-211.Google Scholar
  81. Sageshima, M., Masuda, H., Kawamura, K., and Shozawa, T. (1987). Membranous lipodystrophy. Light and electron microscopic study of a biopsy case. Acta Pathol. Jpn. 37:281-290.Google Scholar
  82. Sami, S., Liu, G., Hornicek, F., Cates, J. M., and Mankin, H. J. (2002). Membranous lipodystrophy. A case report. J. Bone Joint Surg. Am. 84-A:630-633.Google Scholar
  83. Sauter, B., Albert, M. L., Francisco, L., Larson, M., Somersoon, S., and Bhardwaj, N. (2000). Consequences of cell death: Exposure to necrotic tumor cells, but not primary cells or apoptotic cells, introduces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191:411-416.Google Scholar
  84. Schafer, C., Klunemann, H. H., Ibach, B., Mueller, J., Putzhammer, A., Trender-Gerhard, I., Schuierer, G., and Klein, H. E. (2002). [Presenile dementia in polycystic lipomembranous osteodysplasia]. Nervenarzt 73:879-882.Google Scholar
  85. Sjolin, H., Tomasello, E., Mousavi-Jazi, M., Bartolazzi, A., Karre, K., Vivier, E., and Cerboni, C. (2002). Pivotal role of KARAP/DAP12 adaptor molecule in the natural killer cell-mediated resistance to murine cytomegalovirus infection. J. Exp. Med. 195:825-834.Google Scholar
  86. Smith, K. M., Wu, J., Bakker, A. B., Phillips, J. H., and Lanier, L. L. (1998). Ly-49D and Ly-49H associate with mouse DAP12 and form activating receptors. J. Immunol. 161:7-10.Google Scholar
  87. Stubgen, J. P., and Lotz, B. P. (1992). Membranous lipodystrophy. Clinical and electrophysiological observations in the first South African case. S. Afr. Med. J. 81:620-622.Google Scholar
  88. Tanaka, J. (1980). Leukoencephalopathic alteration in membranous lipodystrophy. Acta Neuropathol. (Berl.) 50:193-197.Google Scholar
  89. Tanaka, J. (2000). Nasu-Hakola disease: A review of its leukoencephalopathic and membranolipodystrophic features. Neuropathology 20(Suppl):S25-S29.Google Scholar
  90. Teitelbaum, S. L. (2000). Bone resorption by osteoclasts. Science 289:1504-1508.Google Scholar
  91. Teitelbaum, S. L., Tondravi, M. M., and Ross, F. P. (1997). Osteoclasts, macrophages, and the molecular mechanisms of bone resorption. J. Leukoc. Biol. 61:381-388.Google Scholar
  92. Tomasello, E., Desmoulins, P.O., Chemin, K., Guia, S., Cremer, H., Ortaldo, J., Love, P., Kaiserlian, D., and Vivier, E. (2000). Combined natural killer cell and dendritic cell functional deficiency in KARAP/DAP12 loss-of-function mutant mice. Immunity 13:355-364.Google Scholar
  93. Tranebjaerg, L., Schrader, H., and Paloneva, J. (2000). [Polycystic lipomembranous osteodysplasia]. Tidsskr. Nor. Laegeforen. 120:3196.Google Scholar
  94. Ueki, Y., Kohara, N., Oga, T., Fukuyama, H., Akiguchi, I., Kimura, J., and Shibasaki, H. (2000). Membranous lipodystrophy presenting with palilalia: A PET study of cerebral glucose metabolism. Acta Neurol. Scand. 102:60-64.Google Scholar
  95. Vaananen, H. K., Zhao, H., Mulari, M., and Halleen, J. M. (2000). The cell biology of osteoclast function. J. Cell. Sci. 113(Pt. 3):377-381.Google Scholar
  96. Van Everbroeck, B., Dewulf, E., Pals, P., Lubke, U., Martin, J. J., and Cras, P. (2002). The role of cytokines, astrocytes, microglia and apoptosis in Creutzfeldt-Jakob disease. Neurobiol. Aging. 23:59-64.Google Scholar
  97. Verloes, A., Maquet, P., Sadzot, B., Vivario, M., Thiry, A., and Franck, G. (1997). Nasu-Hakola syndrome: Polycystic lipomembranous osteodysplasia with sclerosing leucoencephalopathy and presenile dementia. J. Med. Genet. 34:753-737.Google Scholar
  98. Wood, C. (1978). Membranous lipodystrophy of bone. Arch. Pathol. Lab. Med. 102:22-27.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Marino Muxfeldt Bianchin
    • 1
    • 2
  • Heraldo M. Capella
    • 2
  • Daniel Loureiro Chaves
    • 2
    • 3
    • 4
  • Mário Steindel
    • 5
  • Edmundo C. Grisard
    • 5
  • Gerson Gandi Ganev
    • 2
  • João Péricles da SilvaJr.
    • 6
    • 7
  • Evaldo Schaeffer Neto
    • 4
    • 8
  • Mônica Aparecida Poffo
    • 2
  • Roger Walz
    • 1
  • Carlos G. CarlottiJr.
    • 1
    • 9
  • Américo C. Sakamoto
    • 1
  1. 1.CIREP, Department of Neurology, Psychiatry and Medical Psychology, Ribeirão Preto School of MedicineUniversity of São PauloRibeirão Preto, SPBrazil
  2. 2.Hospital Regional de São José Homero de Miranda GomesSanta CatarinaBrazil
  3. 3.Diagnóstico Médico por Imagem—DMISanta CatarinaBrazil
  4. 4.Hospital Governador Celso Ramos, FlorianópolisSanta CatarinaBrazil
  5. 5.Departamento de Microbiologia e ParasitologiaUniversidade Federal de Santa CatarinaSanta CatarinaBrazil
  6. 6.Departamento de PatologiaUniversidade Federal de Santa CatarinaSanta CatarinaBrazil
  7. 7.FlorianópolisLaboratório de Anatomia Patológica Ltda—APSanta CatarinaBrazil
  8. 8.SONITEC—Diagnóstico Por ImagemSanta CatarinaBrazil
  9. 9.Laboratory of Molecular Biology, Surgery Departament, Ribeirão Preto School of Medicine, University HospitalUniversity of São PauloPreto, SPBrazil

Personalised recommendations