Advertisement

Cellulose

, Volume 11, Issue 3–4, pp 395–401 | Cite as

How the geometrical model for plant cell wall formation enables the production of a random texture

  • Bela Mulder
  • Jan Schel
  • Anne Mie Emons
Article

Abstract

Cellulose synthase (CESA) molecules are the building blocks and catalytic centers of the CESA complex. The study of mutants in Arabidopsis has led to insight into the structure of these nanomachines. Inside the plasma membrane, the CESA molecules are arranged in complexes, which, apart from the CESA molecules proper, contain other, mostly unidentified, proteins. We developed a theory in which CESA density, together with distance between cellulose microfibrils (CMFs) being deposited and cell geometry, determines wall texture. We have shown earlier how this theory is able to explain the production of axial, helical, helicoid and crossed-polylamellate textures. In the present article we extend this theory to random wall textures.

Cell wall architecture Cellulose microfibrils Cellulose synthase Geometrical model Microtubules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ebskamp M., Akkerman M., Schel J.H.N., Mulder B.M.and Emons A.M.C.2004.The cellulose synthase complex,its structure and assembly,and how its density in the plasma membrane may dictate cell wall texture to appear.To be published.Google Scholar
  2. Emons A.M.C.1989.Helicoidal micro bril deposition in a tip-growing cell and microtubule alignment during tip morpho-genesis:a dry-cleaving and freeze-substitution study.Can.J. Bot.67:2401–2408.Google Scholar
  3. Emons A.M.C.1994.Winding threads around plant cells:a geometrical model for micro bril deposition.Plant Cell Environ.17:3–14.Google Scholar
  4. Emons A.M.C.and Kieft H.1994.Winding threads around plant cells:applications of the geometrical model for micro-bril deposition.Protoplasma 180:59–69.Google Scholar
  5. Emons A.M.C.and Mulder B.M.1997.Plant cell wall archi-tecture.Comments Theor.Biol. 4:115–131.Google Scholar
  6. Emons A.M.C.and Mulder B.M.1998.The making of the architecture of the plant cell wall:how cells exploit geometry. Proc.Natl.Acad.Sci.USA 95:7215–7219.Google Scholar
  7. Emons A.M.C.and Mulder B.M.2000.How the deposition of cellulose micro brils build cell wall architecture.Trends Plant Sci. 5:35–40.Google Scholar
  8. Emons A.M.C.and Mulder B.M.2001.Micro brils build architecture:A geometrical model.In:Molecular Breeding of Woody Plants.Elsevier Science BV, Amsterdam,The Netherlands,pp.111–119.Google Scholar
  9. Emons A.M.C., Schel J.H.N.and Mulder B.M.2002.The geometrical model for micro bril deposition and the influence of the cell wall matrix.Plant Biol. 4:22–26.Google Scholar
  10. Gardiner J.C., Taylor N.G.and Turner S.R.2003.Control of cellulose synthase complex localization in developing xylem. Plant Cell 15:1740–1748.Google Scholar
  11. Haigler C.H.and Brown R.M.1986.Transport of rosettes from the Golgi apparatus to the plasma membrane in isolated mesophyll cells of Zinnia elegans during differentation to tracheary elements in suspension culture.Protoplasma 134:111–120.Google Scholar
  12. Himmelspach R., Williamson R.E.and Wasteneys G.O.2003.Cellulose micro bril alignment recovers from DCB-induced disruption despite microtubule disorganization.Plant J.36:565–575.Google Scholar
  13. Ketelaar T., Faivre-Moskalenko C., Esseling J.J., de Ruijter N.C.A., Grierson C.S., Dogterom M.and Emons A.M.C. 2002.Positioning of nuclei in Arabidopsis root hairs:an actin-regulated process of tip growth.Plant Cell 14:2941–2955.Google Scholar
  14. Ketelaar T., de Ruijter N.C.A.and Emons A.M.C.2003. Unstable factin specifes the area and microtubule direction of cell expansion in Arabidopsis root hairs.Plant Cell 15:285–292.Google Scholar
  15. Lloyd C.and Chan J.2004.Microtubules and the shape of plants to come.Nat.Rev.Mol.Cell Biol. 5:13–23.Google Scholar
  16. Miller D.D., de Ruijter N.C.A., Bisseling T.and Emons A.M.C.1999.The role of actin in root hair morphogenesis: studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug.Plant J.17:141–154.Google Scholar
  17. Mulder B.M.and Emons A.M.C.2001.A dynamical model for plant cell wall architecture formation.J.Math.Biol.42:261–289.Google Scholar
  18. de Ruijter N.C.A., Rook M.B., Bisseling T.and Emons A.M.C. 1998.Lipochito-oligosaccharides re-initiate root hair tip growth in Vicia sativa with high calcium and spectrin-like antigen at the tip.Plant J.13:341–350.Google Scholar
  19. de Ruijter N.C.A., Bisseling T.and Emons A.M.C.1999.Rhi-zobium Nod factors induce an increase in sub-apical ne bundles of actin laments in Vicia sativa root hairs within minutes.Mol.Plant Microbe Interact.12:829–832.Google Scholar
  20. Sugimoto K., Himmelspach R., Williamson R.E.and Wasteneys G.O.2003.Mutation or drug-dependent microtubule disruption causes radial swelling without altering parallel cellulose micro bril deposition in Arabidopsis root cells.Plant Cell 15:1414–1429.Google Scholar
  21. Wolters-Arts A.M.C., van Amstel T.and Derksen J.1993.Tracing cellulosemicro bril orientation in inner primary cell walls.Protoplasma 175:102–111.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Bela Mulder
    • 1
    • 2
  • Jan Schel
    • 1
  • Anne Mie Emons
    • 1
  1. 1.Laboratory of Plant Cell Biology, Department of Plant SciencesWageningen UniversityWageningenThe Netherlands
  2. 2.FOM Institute for Atomic and Molecular Physics (AMOLF)AmsterdamThe Netherlands (e-mail

Personalised recommendations