Advertisement

Cellulose

, Volume 11, Issue 3–4, pp 403–411 | Cite as

Structural investigations of microbial cellulose produced in stationary and agitated culture

  • Wojciech Czaja
  • Dwight Romanovicz
  • R. malcolm Brown
Article

Abstract

Structural characteristics of microbial cellulose synthesized by two different methods have been compared using FT-IR and X-ray diffraction techniques. Cellulose synthesized by Acetobacter xylinum NQ-5 strain from agitated culture conditions is characterized by a lower Iϑ mass fraction than cellulose that was produced statically. Such a decrease was in good correlation with smaller crystallite sizes of microfibrils produced in agitated culture. Formation of characteristic cellulose spheres during agitation has been investigated by various electron and light microscopic methods. On this basis, a hypothetical mechanism of sphere formation and cell arrangement in the agitated culture has been proposed. During agitation, cells are stacked together in organized groups around the outer surface of the cellulose sphere.

Acetobacter Agitated culture ATCC 53582 Bacterial cellulose Fermentation FT-IR Microbial cellulose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander L.E.1979.X-ray Diffraction Methods in Polymer Science.Robert E. Kreiger Publishing Co., Humington,NY, pp.423–424.Google Scholar
  2. Brown R.M.Jr.1998.Microbial cellulose:a new resource for wood,paper,textiles,food and specialty products (http://www.botany.utexas.edu/facsta./facpages/mbrown),Position Paper.Google Scholar
  3. Brown R.M.Jr., Kudlicka K., Cousins S.K.and Nagy R.1992. Gravity effects on cellulose assembly.Am.J.Bot.79:1247–1258.Google Scholar
  4. Brown R.M.Jr.and Lin F.C.1990.Multiribbon microbial cellulose.US Patent 4,954,439.Google Scholar
  5. Chao Y., Ishida T., Sugano Y.and Shoda M.2000.Bacterial cellulose production by Acetobacter xylinum in a 50-l internal-loop airlift reactor.Biotechnol.Bioeng.68(3):345–352.Google Scholar
  6. Fontana J.D., de Sousa A.M., Fontana C.K., Torriani I.L., Moreschi J.C., Gallotti B.J., de Sousa S.J., Narcisco G.P., Bichara J.A.and Farah L.F.X.1990.Acetobacter cellulose technol.24/25:253–264.Google Scholar
  7. Hestrin S.and Schramm M.1954.Synthesis of cellulose by Acetobacter xylinum:II.Preparation of freeze-dried cells capable of polymerizing glucose to cellulose.Biochem.J.58: 345–352.Google Scholar
  8. Hirai A., Tsuji M., Yamamoto H.and Horii F.1998.In situ crystallization of bacterial cellulose.III.Influence of different polymeric additives on the formation of microfibrils as revealed by transmission electron microscopy.Cellulose 5:201–213.Google Scholar
  9. Iguchi M., Yamanaka S.and Budhiono A.2000.Bacterial cellulose-a masterpiece of nature 's arts.J.Mater.Sci 35: 261–270.Google Scholar
  10. Ishikawa A., Matsuoka M., Tsuchida T.and Yoshinaga F. 1995.Increasing of bacterial cellulose production by sulfo-guanidine-resistant mutants derived from Acetobacter xyli-num subsp.sucrofermentans BPR2001.Biosci.Biotechnol. Biochem.59:2259–2263.Google Scholar
  11. Jonas R.and Farah L.F.1998.Production and application of microbial cellulose.Polym.Degrad.Stabil.59:101–106.Google Scholar
  12. Koo H.M., Song S.H., Pyun Y.R.and Kim Y.S.1998.Evidence that a beta-1,4-endoglucanase secreted by Acetobacter xyli-num plays an essential role for the formation of cellulose fiber. Biosci.Biotechnol.Biochem.62(11):2257–2259.Google Scholar
  13. Kouda T., Naritomi T., Yano H.and Yoshinaga F.1997a. Effects of oxygen and carbon dioxide pressures on bacterial cellulose production by Acetobacter in aerated and agitated culture.J.Ferment.Bioeng.84(2):124–127.Google Scholar
  14. Kouda T., Naritomi T., Yano H.and Yoshinaga F.1998. Inhibitory effect of carbon dioxide on bacterial cellulose production by Acetobacter in agitated culture.J.Ferment. Bioeng.85(3):318–321.Google Scholar
  15. Kouda T., Yano H.and Yoshinaga F.1997b.Effect of agitator con guration on bacterial cellulose productivity in aerated and agitated culture.J.Ferment.Bioeng.83(4):371–376.Google Scholar
  16. Kouda T., Yano H., Yoshinaga F., Kaminoyama M.and Kamiwano M.1996.Characterization of non-Newtonian behavior during mixing of bacterial cellulose in a bioreactor. J.Ferment.Bioeng.82(4):382–386.Google Scholar
  17. Krumm S.1997.Web site:http/ www.geol.uni-erlangen.de/ html/.Google Scholar
  18. Marx-Figini M.and Pion B.G.1974.Kinetic investigations on biosynthesis of cellulose by Acetobacter xylinium. Biochim. Biophys.Acta 338:382–393.Google Scholar
  19. Matsuoka M., Tsuchida T., Matsushita K., Adachi O.and Yoshinaga F.1996.A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp.sucrofermentans. Biosci.Biotechnol.Biochem.60(4):575–579.Google Scholar
  20. Nieduszynski I.and Preston R.D.1970.Crystallite size in natural cellulose.Nature 225:273–274.Google Scholar
  21. Nishi Y., Uryu M., Yamanaka S., Watanabe K., Kitamura N., Iguchi M.and Mitsuhashi S.1990.The structure and mechanical properties of sheets prepared from bacterial cel-lulose.Part 2:improvement of the mechanical properties of sheets and their applicability to diaphragms of electro-acoustic transducers.J.Mater.Sci.25:2997–3001.Google Scholar
  22. Nobles D.R., Romanovicz D.K.and Brown R.M.Jr.2001. Cellulose in cyanobacteria.Origin of vascular plant cellulose synthase?Plant Physiol.127(2):529–542.Google Scholar
  23. Ross P., Mayer R.and Benziman M.1991.Cellulose biosyn-thesis and function in bacteria.Microbiol.Rev.55(1):35–58.Google Scholar
  24. Saxena I.M., Roberts E.M.and Brown R.M.Jr.1990.Modi-cation of cellulose normally synthesized by cellulose-pro-ducing microorganisms.US Patent 4,950,597.Google Scholar
  25. Sugiyama J., Persson J.and Chanzy H.1991.Combined infrared and electron diffraction study of the polymorphism of native celluloses.Macromolecules 24:2461–2466.Google Scholar
  26. Tahara N., Tabuchi M., Watanabe K., Yano H., Morinaga Y. and Yoshinaga F.1997.Degree of polymerization of cellulose from Acetobacter xylinum BPR2001 decreased by cellulase produced by the strain.Biosci.Biotechnol.Biochem. 61(11):1862–1865.Google Scholar
  27. Thompson N.S., Kaustinen H.M., Carlson J.A.and Uhlin K.I. 1988.Tunnel structures in Acetobacter xylinum Int.J.Biol. Macromol.10:126–127.Google Scholar
  28. Tonouchi N., Tahara N., Tsuchida T., Yoshinaga F., Beppu T. and Horinouchi S.1995.Addition of small amount of an endoglucanase enhances cellulose production by Acetobacter xylinum Biosci.Biotechnol.Biochem. 59(5):805–808.Google Scholar
  29. Vandamme E.J., De Baets S., Vanbaelen A., Joris K.and De Wulf P.1998.Improved production of bacterial cellulose and its application potential.Polym.Degrad.Stab.59:93–99.Google Scholar
  30. VanderHart D.L.and Atalla R.H.1984.Studies of micro-structure in native celluloses using solid-state 13 CNMR. Macromolecules 17:1465–1472.Google Scholar
  31. Verschuren P.G., Cardona T.D., Robert Nout M.J., De Goo-ijer K.D.and Van den Heuvel J.C.2000.Location and lim-itation of cellulose production by Acetobacter xylinum established from oxygen pro les.J.Biosci.Bioeng.89(5): 414–419.Google Scholar
  32. Watanabe K., Tabuchi M., Morinaga Y.and Yoshinaga F. 1998.Structural features and properties of bacterial cellulose produced in agitated culture.Cellulose 5:187–200.Google Scholar
  33. Yamamoto H.and Horii F.1993.CP/MAS C NMR analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures.Macromolecules 26:1313–1317.Google Scholar
  34. Yamamoto H., Horii F.and Hirai A.1996.In situ crystalliza-tion of bacterial cellulose.II.Influences of different polymeric additives on the formation of celluloses I a and I b at the early stage of incubation.Cellulose 3:229–242.Google Scholar
  35. Yamamoto H., Horii F.and Odani H.1989.Structural changes of native cellulose crystals induced by annealing in aqueous alkaline and acidic solutions at high temperatures.Macro-molecules 22:4130–4132.Google Scholar
  36. Yoshinaga F., Tonouchi N.and Watanabe K.1997.Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material.Biosci.Biotechnol.Biochem.61(2):219–224.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Wojciech Czaja
    • 1
    • 2
  • Dwight Romanovicz
    • 1
  • R. malcolm Brown
    • 1
  1. 1.Section of Molecular Genetics and MicrobiologyUniversity of Texas at AustinAustinUSA
  2. 2.Technical University of LodzLodzPoland

Personalised recommendations