, Volume 11, Issue 1, pp 45–52 | Cite as

Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp

  • Roger H. Newman


Solid-state 13C NMR spectroscopy was used to characterize a bleached softwood kraft pulp in the never-dried state and after cycles of drying and remoistening. Changes in NMR signal strengths indicated that growth of crystalline domains involved cocrystallization rather than accretion of cellulose from noncrystalline domains. A cluster of C-4 signals at 89.4 ppm, assigned to the interiors of crystalline domains, grew at the expense of C-4 signals at 84.0 and 84.9 ppm, assigned to the well-ordered surfaces of crystalline domains. Irreversible changes were not detected until the moisture content dropped below 18%. They were enhanced by a second drying/remoistening cycle, but showed little further change on subsequent cycles. The necessary conditions resembled those reported for hornification, suggesting that cocrystallization might provide a mechanism for hornification.

Cocrystallization Crystalline domains Hornification Kraft pulp Solid-state NMR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atalla R.H., Gast J.C., Sindorf D.W., Bartuska V.J. and Maciel G.E. 1980. 13C NMR spectra of cellulose polymorphs. J. Am. Chem. Soc. 102: 3249–3251.Google Scholar
  2. Atalla R.H. and VanderHart D.L. 1984. Native celluloses: a composite of two distinct crystalline forms. Science 223: 283–285.Google Scholar
  3. Back E.L. and Klinga L.O. 1963. Reactions in dimensional stabilization of paper and fibre board by heat treatment. Sv. Papperstidn. 66: 745–753.Google Scholar
  4. Bergman S.I. and Johnson M.M. 1950. The portion of water-accessible and nonaccessible cellulose in wood pulps as affected by beating. Tappi 33: 385–387.Google Scholar
  5. Bobalek J.F. and Chaturvedi M. 1989. The effects of recycling on the physical properties of handsheets with respect to specific wood species. Tappi J. 72(6): 123–125.Google Scholar
  6. Bouchard J. and Douek M. 1994. The effects of recycling on the chemical properties of pulps. J. Pulp Paper Sci. 20: J131–J136.Google Scholar
  7. Bugajer S. 1976. O efeito de reciclagem de fibras secundárias sobre as propriedades do papel kraft. Papel 12: 108–112.Google Scholar
  8. Dolmetsch H. and Dolmetsch H. 1968. On the relations between crystallites, elementary fibrils and accessible regions in cellulose fibres, especially in wood fibre cell walls. Das Papier 22: 1–11.Google Scholar
  9. Duchesne I., Hult E.-L., Molin U., Daniel G., Iversen T. and Lennholm H. 2001. The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR. Cellulose 8: 103–111.Google Scholar
  10. Guest D.A. and Voss G.P. 1983. Improving the quality of recycled fibre. Paper Technol. Industry 24: 256–268.Google Scholar
  11. Hemmingson J.A. and Newman R.H. 1995. Changes in molecular ordering associated with alkali treatment and vacuum drying of cellulose. Cellulose 2: 71–82Google Scholar
  12. Horn R.A. 1975. What are the effects of recycling on fiber and paper properties? Paper Trade J. 159: 78–82.Google Scholar
  13. Howard R.C. 1990. The effects of recycling on paper quality. J. Pulp Paper Sci. 16: J143–J149.Google Scholar
  14. Howard R.C. and Bichard W. 1992. The basic effects of recycling on pulp properties. J. Pulp Paper Sci. 18: J151–J159.Google Scholar
  15. Hult E.-L., Larsson P.T. and Iversen T. 2000. A comparative CP/MAS 13C-NMR study of cellulose structure in spruce wood and kraft pulp. Cellulose 7: 35–55.Google Scholar
  16. Hult E.-L., Larsson P.T. and Iversen T. 2001. Cellulose fibril aggregation-an inherent property of kraft pulps. Polymer 42: 3309–3314.Google Scholar
  17. Ioelovich M.Ya., Treimanis A., Klevinska V. and Veveris G. 1989. Changes in crystalline structure of cellulose during its separation from wood. Khimiya Drevesiny 5: 10–13.Google Scholar
  18. Jayme G. 1944. Mikro-Quellungsmessungen an Zellstoffen. Wochenbl. Papierfabr. 6: 187–194.Google Scholar
  19. Jayme G. 1958. Properties of wood celluloses II. Determination and significance of water retention value. Tappi 41(11): 180A–183A.Google Scholar
  20. Larsson P.T., Hult E.-L., Wickholm K., Pettersson E. and Iversen T. 1999. CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nuclear Magn. Reson. 15: 31–40.Google Scholar
  21. Lennholm H. and Iversen T. 1995. Estimation of cellulose I and II in cellulose samples by principal component analysis of 13CCP/ MAS-NMR-spectra. Holzforschung 49: 119–126.Google Scholar
  22. Marchessault R.H., Taylor M.G. and Winter W.T. 1990. 13C CP/MAS NMR spectra of poly-ß-D(14)mannose: mannan. Can. J. Chem. 68: 1192–1195.Google Scholar
  23. Nazhad M.M. and Paszner L. 1994. Fundamentals of strength loss in recycled paper. Tappi J. 77(9): 171–179.Google Scholar
  24. Newman R.H. 1998. Evidence for assignment of 13C NMR signals to cellulose crystallite surfaces in wood, pulp and isolated celluloses. Holzforschung 52: 157–159.Google Scholar
  25. Newman R.H. 1999. Estimation of the relative proportions of cellulose Ia and Iß in wood by carbon-13 NMR spectroscopy. Holzforschung 53: 335–340.Google Scholar
  26. Newman R.H. and Hemmingson J.A. 1995. Carbon-13 NMR distinction between categories of molecular order and disorder in cellulose. Cellulose 2: 95–110.Google Scholar
  27. Newman R.H. and Hemmingson J.A. 1998. Interactions between locust bean gum and cellulose characterized by 13C NMR spectroscopy. Carbohydr. Polym. 36: 167–172.Google Scholar
  28. Newman R.H., Hemmingson J.A. and Suckling I.D. 1993. Carbon-13 nuclear magnetic resonance studies of kraft pulping. Holzforschung 47: 234–238.Google Scholar
  29. Nishiyama Y., Langan P. and Chanzy H. 2002. Crystal structure and hydrogen-bonding system in cellulose Iß from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124: 9074–9082.Google Scholar
  30. Oksanen T., Buchert J. and Viikari L. 1997. The role of hemicelluloses in the hornification of bleached kraft pulps. Holzforschung 51: 355–360.Google Scholar
  31. Scallan A.M. and Tigerström A.C. 1992. Swelling and elasticity of the cell walls of pulp fibers. J. Pulp Paper Sci. 18: 188–193.Google Scholar
  32. Stevenson T.T. and Furneaux R.H. 1991. Chemical methods for the analysis of sulphate galactans of red algae. Carbohydr. Res. 210: 277–298.Google Scholar
  33. VanderHart D.L. and Atalla R.H. 1984. Studies of microstructure in native celluloses using solid-state 13C NMR. Macromolecules 17: 1465–1472.Google Scholar
  34. Weise U., Hiltunen E. and Paulapuro H. 1998. Hornification of pulp and its means of reversal. Das Papier 52(10A): V14–V19.Google Scholar
  35. Wickholm K., Larsson P.T. and Iversen T. 1998. Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr. Res. 312: 123–129.Google Scholar
  36. Wijnman C.F. 1954. Influence of heavy beating of cotton fibers on molecular length and crystallinity. Tappi 37: 96–98.Google Scholar
  37. Wormald P., Wickholm K., Larsson P.T. and Iversen T. 1996. Conversions between ordered and disordered cellulose. Effects of mechanical treatment followed by cyclic wetting and drying. Cellulose 3: 141–152.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Roger H. Newman
    • 1
  1. 1.Industrial Research LimitedLower HuttNew Zealand

Personalised recommendations