Advertisement

Central Configurations of the Planar Coorbitalsatellite Problem

  • Josep M. Cors
  • Jaume Llibre
  • Merce Ollé
Article

Abstract

We study the planar central configurations of the 1 +n body problem where one mass is large and the other n masses are infinitesimal and equal. We find analytically all these central configurations when 2≤n≤4. Numerically, first we provide evidence that when n9 the only central configuration is the regular n-gon with the large mass in its barycenter, and second we provide also evidence of the existence of an axis of symmetry for every central configuration.

1 + n body problem contol configuration coorbital satellites 

References

  1. Albouy, A.: 1995, 'Symétrie des configurations centrales de quatre corps', C. R. Acad. Sci. Paris 320, 217–220.zbMATHMathSciNetGoogle Scholar
  2. Albouy, A.: 1996, 'The symmetric central configurations of four equal masses', Contemporary Math. 198, 131–135.zbMATHMathSciNetGoogle Scholar
  3. Albouy, A. and Chenciner, A.: 1998, 'The n-body problem and mutual distances', Invent. Math. 131, 151–184.zbMATHMathSciNetCrossRefADSGoogle Scholar
  4. Albouy, A. and Llibre, J.: 2002, 'Spatial central configurations for the 1+4 body problem', Contemporary Math. 292, 1–16.zbMATHMathSciNetGoogle Scholar
  5. Albouy, A.: 1998, 'Recherches sur le probléme des configurations centrales', preprint.Google Scholar
  6. Brumberg, V. A.: 1957, 'Permanent configurations in the problem of four bodies and their stability', Astr. Iv. 34, 55–74.MathSciNetADSGoogle Scholar
  7. Buck, G.: 1991, 'The collinear central configurations of n equal masses', Cel. Mech. Dynam. Astr. 51, 305–317.zbMATHMathSciNetCrossRefADSGoogle Scholar
  8. Buck, G.: 1990, 'On clustering in central configurations', Proc. Amer. Math. Soc. 108, 801–810.zbMATHMathSciNetCrossRefGoogle Scholar
  9. Casasayas, J., Llibre, J. and Nunes, A.: 1994, 'Central configuration of the planar' 1 + n-body problem', Cel. Mech. Dynam. Astr. 60, 273–288.zbMATHMathSciNetCrossRefADSGoogle Scholar
  10. Cedó, F. and Llibre, J.: 1989, 'Symmetric central configuration of the spatial n-body problem', J. Geometry Phys. 6, 367–394.zbMATHCrossRefADSGoogle Scholar
  11. Chenciner, A.: 1998, 'Collisions totales, mouvements complétement paraboliques et réduction des homothéthies dans le problème des n corps', Regular Chaotic Dynam. 3, 93–106.zbMATHMathSciNetCrossRefGoogle Scholar
  12. Elmabsout, B.: 1988, 'Sur l'existence de certaines configuration d'equilibre relatif dans le problème des N corps', Cel. Mech. 41, 131–151.zbMATHMathSciNetCrossRefADSGoogle Scholar
  13. Hagihara, Y.: 1970, Celestial Mechanics, Vol. 1, MIT press, Massachusetts.Google Scholar
  14. Hall, G. R.: 1988, 'Central configuration in the planar 1 + n body problem', preprint.Google Scholar
  15. Lang, S.: 1993, Algebra, 3rd edn, Addison-Wesley.Google Scholar
  16. Llibre, J.: 1976, 'Posiciones de equilibrio relativo del problema de 4 cuerpos', Publicacions Matematiques UAB 3, 73–88.Google Scholar
  17. McCord, C.: 1996, 'Planar central configuration estimates in the N-body problem', Ergod. Th. Dynam. Sys. 16, 1059–1070.zbMATHMathSciNetGoogle Scholar
  18. MacMillan, W. D. and Bartky, W.: 1932, 'Permanent configurations, in the problem of four bodies', Trans. Amer. Math. Soc. 34, 838–875.zbMATHMathSciNetCrossRefGoogle Scholar
  19. Maxwell, J. C.: 1985, On the Stability of Motion of Saturn's Rings, Macmillan & Co., London.Google Scholar
  20. Meyer, K. R.: 1987, 'Bifurcation of a central configuration', Cel. Mech. 40, 273–282.zbMATHCrossRefADSGoogle Scholar
  21. Meyer, K. R. and Schmidt, D.: 1988a, 'Bifurcation of relative equilibria in the four and five body problem', Ergod. Th. Dynam. Sys. 8, 215–225.zbMATHMathSciNetCrossRefGoogle Scholar
  22. Meyer, K. R. and Schmidt, D.: 1988b, 'Bifurcations of relative equilibria in the n-body and Kirchhoff problems', SIAM J. Math. Anal. 19, 1295–1313.zbMATHMathSciNetCrossRefADSGoogle Scholar
  23. Moeckel, R.: 1985, 'Relative equilibria of the four-body problem', Ergod. Th. Dynam. Sys. 5, 417–435.zbMATHMathSciNetCrossRefGoogle Scholar
  24. Moeckel, R.: 1990, 'On central configuration', Math. Z. 205, 499–517.zbMATHMathSciNetGoogle Scholar
  25. Moeckel, R.: 1994, 'Linear stability of relative equilibria with a dominant mass', J. Dyn. Diff. Equat. 6, 37–51.zbMATHMathSciNetCrossRefGoogle Scholar
  26. Moulton, F. R.: 1910, 'The straight line solutions of n bodies', Ann. Math. 12, 1–17.zbMATHMathSciNetCrossRefGoogle Scholar
  27. Numerical Recipes in Fortran, W.H. Press et al., Cambridge University press, 1992.Google Scholar
  28. Olver, P.: 1999, 'Classical invariant theory', London Math. Soc. Student Texts, Vol. 44, Cambridge University Press, New York.zbMATHGoogle Scholar
  29. Perko, L. M. and Walter, E. L.: 1985, 'Regular polygon solutions of the n-body problem', Proc. Amer. Math. Soc. 94, 301–309.zbMATHMathSciNetCrossRefGoogle Scholar
  30. Roberts, G.: 2000, 'Linear Stability of the 1 +n-gon Relative equilibrium', Hamiltonian systems and celestial mechanics (HAMSYS-98), World Scientific Monograph Series in Maths 6, 303–330.zbMATHGoogle Scholar
  31. Saari, D.: 1980, 'On the role and properties of central configuration', Cel. Mech. 21, 9–20.zbMATHMathSciNetCrossRefADSGoogle Scholar
  32. Saari, D. G. and Hulkower, N. D.: 1981, 'On the manifolds of total collapse orbits and of completely parabolic orbits for the n-body problem', J. Diff. Equations 41, 27–43.zbMATHMathSciNetCrossRefGoogle Scholar
  33. Salo, H. and Yoder, C. F.: 1988, 'The dynamics of coorbital satellite systems', Astron. Astrophys. 205, 309–327.ADSGoogle Scholar
  34. Schmidt, D.S.: 1980, 'Central configuration in' R 2 and R 3, Contemporary Math. 81, 59–76.Google Scholar
  35. Shub, M.: 1970, 'Appendix to Smale's paper: Diagonals and relative equilibria', In: Springer Lectures Notes in Math. Vol. 197, Manifolds, Amsterdam, pp. 199–201.Google Scholar
  36. Simó, C.: 1978, 'Relative equilibrium solutions in the four-body problem', Celestial Mech. 18, 165–184.zbMATHMathSciNetCrossRefADSGoogle Scholar
  37. Smale, S.: 1970a, 'Topology and mechanics II: The planar n-body problem', Inventiones Math. 11, 45–64.zbMATHMathSciNetCrossRefADSGoogle Scholar
  38. Smale, S.: 1970b, 'Problems on the nature of relative equilibria in Celestial Mechanics', In: Springer Lectures Notes in Math. Vol. 197, Manifolds, Amsterdam, pp. 194–198.Google Scholar
  39. Smale, S.: 1998, 'Mathematical problems for the next centry', Math. Intelligencer 20, 7–15.zbMATHMathSciNetGoogle Scholar
  40. Sundman, K.F.: 1907, 'Recherches sur le problème des trois corps,' Acta Soc. Sci. Fennicae 34, (6).Google Scholar
  41. Wintner, A.: 1941, The Analytical Foundations of Celestial Mechanics, Princeton University Press. pp. 1–43.Google Scholar
  42. Xia, Z.: 1991, 'Central configurations with many small masses,' J. Diff. Equations 91, 168–179.zbMATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Josep M. Cors
  • Jaume Llibre
  • Merce Ollé

There are no affiliations available

Personalised recommendations