Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 88, Issue 4, pp 365–378 | Cite as

New Periodic Solutions for 3-Body Problems

  • Shiqing Zhang
  • Qing Zhou
  • Yurong Liu
Article

Abstract

For Newtonian 3-body problems in ℝ2, we prove the existence of new symmetric noncollision periodic solutions with some fixed winding numbers and masses.

3-body problems noncollision periodic solutions variational methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosetti, A. and Coti Zalati, V.: 1993, ‘Periodic solutions of singular Lagrangian systems', Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Boston, Vol. 10.Google Scholar
  2. 2.
    Bahri, A. and Rabinowitz, P.: 1991, ‘Periodic solutions of Hamiltonian systems of three-body type', Ann. Inst. H. Poincaré Anal. Non Linéaire 8, 561–649.MathSciNetGoogle Scholar
  3. 3.
    Bessi, U. and Coti Zalati, V.: 1991, ‘Symmetries and noncollision closed orbits for planar Nbody-type problems'. Nonlinear Anal. 16, 587–598.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Chenciner, A. and Desolneux, N.: 1998, ‘Minima de l'integrale d'action et equilibres relatifs de n corps', C.R. Acad. Sci. Paris, Sr.I. Math. 326, 1209–1212.MathSciNetGoogle Scholar
  5. 5.
    Chenciner, A. and Montgomery, R.: 2000, ‘A remarkable periodic solution of the three body problem in the case of equal masses', Ann. Math. 152, 881–901.MathSciNetGoogle Scholar
  6. 6.
    Chenciner, A.: 2002, ‘Action minimizing solutions of the Newtonian n-body problem: from homology to symmetry', ICM III, 279–294; I, 651-653.zbMATHMathSciNetGoogle Scholar
  7. 7.
    Chern, S. S.: 1989, ‘Global differential geometry', MAA, 99–139.Google Scholar
  8. 8.
    Coti Zelati, V.: 1990, ‘The periodic solutions of n-body type problems', Ann. Inst. H. Poincaré Anal. Non Linéaire 7, 477–492.zbMATHMathSciNetGoogle Scholar
  9. 9.
    Degiovanni, M. and Giannoni, F.: 1989, ‘Dynamical systems with Newtonian type potentials', Ann. Scuola Norm. Sup. Pisa CI. Sci. 15, 467–494.MathSciNetGoogle Scholar
  10. 10.
    Euler, L.: 1767, ‘De motu rectilineo trium corpörum so mutuo attrahentium', Novi. Comm. Acad. Sci. Imp. Petropll. 332–342.Google Scholar
  11. 11.
    Gordon, W.: 1977, ‘A minimizing property of Keplerian orbits', Amer. J. Math. 5, 961–971.Google Scholar
  12. 12.
    Lagrange, J.: 1873, ‘Essai sur le probléme des trois corps, (1772)', Ouvres 3, 229–331.Google Scholar
  13. 13.
    Long, Y. and Zhang, S. Q.: 2000, ‘Geometric characterizations for variational minimization solutions of the 3-body problem', Acta Math. Sinica 16, 579–592.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Palais, R.: 1979, ‘The principle of symmetric criticality', Comm. Math. Phys. 69, 19–30.CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Simo, C.: 2002, ‘Dynamical properties of the figure eight solution of the three-body problem', Contemp. Math. 292, 209–228.zbMATHMathSciNetGoogle Scholar
  16. 16.
    Simo, C.: 2000, ‘New families of solutions in n-body problems', Proc. ECM, Barcelona Progress in Math., Vol. 201, Birkhauser, pp. 101–115.MathSciNetGoogle Scholar
  17. 17.
    Venturelli, A.: 2001, ‘Une caractérisation variationnelle des solutions de Lagrange du probléme plan des trois corps', C.R. Acad. Sci. Paris, t. 332, Série I, 641–644.zbMATHMathSciNetGoogle Scholar
  18. 18.
    Yosida, K.: 1978, Functional Analysis, 5th edn, Springer, Berlin.Google Scholar
  19. 19.
    Zhang, S. and Zhou, Q.: 2001, ‘A minimizing property of Lagrangian solutions', Acta Mathematica Sinica, English Ser. 17, 497–500.MathSciNetGoogle Scholar
  20. 20.
    Zhang, S. and Zhou, Q.: 2001, ‘Noncollision periodic solution for n-body problems', J. Math. Anal. Appl. 257, 332–342.CrossRefMathSciNetGoogle Scholar
  21. 21.
    Zhang, S. Q. and Zhou, Q.: 2002, ‘Variational methods for the choreography solution to the three-body problem', Science in China 45, 594–597.MathSciNetGoogle Scholar
  22. 22.
    Zhang, S. and Zhou, Q.: 2002, New periodic solutions for 3-body problems, Preprint.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Shiqing Zhang
    • 1
  • Qing Zhou
    • 2
  • Yurong Liu
    • 1
  1. 1.Department of MathematicsYangzhou UniversityYangzhouChina
  2. 2.Department of MathematicsShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations